Suppr超能文献

肝性脑病中的机器学习技术:一项范围综述

Machine learning techniques in hepatic encephalopathy: a scoping review.

作者信息

Kiani Fatemeh, Asadi Farkhondeh, Hosseini Azamossadat, Rahmatizadeh Shahabedin, Hosseini Farhang, Kiani Behzad

机构信息

Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.

Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

BMC Med Inform Decis Mak. 2025 Sep 1;25(1):323. doi: 10.1186/s12911-025-03168-4.

Abstract

INTRODUCTION

Hepatic encephalopathy (HE) is defined as a specific type of cerebral dysfunction that encompasses a wide range of cognitive, psychomotor, and psychiatric disturbances. The burgeoning field of Artificial Intelligence (AI), particularly Machine Learning (ML), offers promising avenues for early detection and enhanced control of HE. This scoping review aims to provide a consolidated overview of AI’s role in the diagnosis and management of HE, thereby informing and guiding future research endeavors in this domain.

METHODS

We followed Arksey and O’Malley’s methodological framework to perform this scoping review, using PubMed, Web of Science, Scopus, ScienceDirect, and IEEE databases to find relevant articles. We also utilized the PRISMA standard to report our review in a standardized manner. Studies that focused on the applications of AI or ML techniques in relation to the prediction or diagnosis of HE disease were included.

RESULTS

Out of the 231 articles identified, 20 were ultimately included in this scoping review. The integration of artificial neural networks and expert systems represented an early and pioneering approach in applying AI to HE. Among supervised learning algorithms, Support Vector Machine emerged as the most frequently employed technique in HE research, based on our review of the selected studies. Notably, the primary application of AI in HE studies has been predictive modeling ( = 14), followed by five studies focused on classifying HE stages and one study analyzing patient survival using AI methodologies.

CONCLUSIONS

This scoping review highlights the growing use of AI and ML diagnostic models and predictive tools utilizing various data types. These advancements have the potential to positively impact patient outcomes. Future research should focus on validating and implementing these AI models in clinical settings to assess their real-world effectiveness in improving patient care.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1186/s12911-025-03168-4.

摘要

引言

肝性脑病(HE)被定义为一种特定类型的脑功能障碍,涵盖广泛的认知、精神运动和精神障碍。新兴的人工智能(AI)领域,尤其是机器学习(ML),为肝性脑病的早期检测和强化控制提供了有前景的途径。本范围综述旨在对人工智能在肝性脑病诊断和管理中的作用进行综合概述,从而为该领域未来的研究工作提供信息并加以指导。

方法

我们遵循阿克西和奥马利的方法框架进行本范围综述,使用PubMed、科学网、Scopus、ScienceDirect和IEEE数据库查找相关文章。我们还利用PRISMA标准以标准化方式报告我们的综述。纳入了关注人工智能或机器学习技术在肝性脑病疾病预测或诊断方面应用的研究。

结果

在识别出的231篇文章中,最终有20篇被纳入本范围综述。人工神经网络与专家系统的整合是将人工智能应用于肝性脑病的早期开创性方法。根据我们对所选研究的综述,在监督学习算法中,支持向量机成为肝性脑病研究中最常使用的技术。值得注意的是,人工智能在肝性脑病研究中的主要应用是预测建模(n = 14),其次是五项专注于肝性脑病阶段分类的研究和一项使用人工智能方法分析患者生存情况的研究。

结论

本范围综述强调了人工智能和机器学习诊断模型以及利用各种数据类型的预测工具的使用日益增加。这些进展有可能对患者预后产生积极影响。未来的研究应侧重于在临床环境中验证和实施这些人工智能模型,以评估它们在改善患者护理方面的实际效果。

补充信息

在线版本包含可在10.1186/s12911 - 025 - 03168 - 4获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4178/12403440/82d0e9a9b7df/12911_2025_3168_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验