Suppr超能文献

用于预测75岁及以上非ST段抬高型心肌梗死患者三年死亡率的增强机器学习模型。

Enhanced machine learning models for predicting three-year mortality in Non-STEMI patients aged 75 and above.

作者信息

Zhang Jing, Xiong Wuyu, Zhang Chengzhi, Huang Cuiyuan, Li Wenqiang, Liu Li, Wang Wei, Sang Ye, Zhen Huiling, Tan Caiwei, Yang Jiajuan, Yang Jian

机构信息

Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China.

Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.

出版信息

BMC Geriatr. 2025 Jul 2;25(1):458. doi: 10.1186/s12877-025-06128-9.

Abstract

BACKGROUND

Non-ST segment elevation myocardial infarction (Non-STEMI) is a severe cardiovascular condition mainly affecting individuals aged 75 and above, who are at higher risk of mortality due to age-related vulnerabilities and other health issues. Current prognostic models are often inadequate in addressing the complexity of this population. This study aims to develop and validate a machine learning (ML) model to predict three-year mortality in Non-STEMI patients aged 75 and above, to assist clinicians in decision-making.

METHODS

Clinical data from 234 Non-STEMI patients aged 75 and above were collected and split into a training cohort (164 patients) and a validation cohort (70 patients) using a 70:30 ratio. Six key factors-age, Pulse (P, beats per minute), respiratory support rate, Glucose (Glu) levels, percutaneous coronary intervention (PCI), and β-blocker use-were identified as significantly associated with three-year mortality through LASSO regression and ten-fold cross-validation. The Random Forest (RF) model was employed for prediction, which yielded the best performance with an area under the curve (AUC) of 0.92. SHapley Additive exPlanations (SHAP) analysis was used to determine the top contributing features influencing mortality, with PCI, age, and P(bpm) identified as the most critical factors. A web-based calculator was also developed to support clinical decision-making.

RESULTS

The RF model demonstrated the best predictive performance (AUC = 0.92), significantly outperforming other models. Key features, such as PCI, age, and P(bpm), were found to be highly influential in predicting three-year mortality. The developed web-based tool offers clinicians a user-friendly platform to incorporate these findings into personalized care decisions.

CONCLUSIONS

This study presents a robust RF model for predicting three-year mortality in Non-STEMI patients aged 75 and above. PCI, β-blocker use, and effective management of P(bpm) and Glu levels are crucial factors for improving patient outcomes. The web-based tool enhances personalized decision-making, helping clinicians better allocate resources and provide tailored interventions for this at-risk population.

摘要

背景

非ST段抬高型心肌梗死(Non-STEMI)是一种严重的心血管疾病,主要影响75岁及以上的人群,由于与年龄相关的脆弱性和其他健康问题,这些人群的死亡风险更高。目前的预后模型往往不足以应对该人群的复杂性。本研究旨在开发并验证一种机器学习(ML)模型,以预测75岁及以上Non-STEMI患者的三年死亡率,辅助临床医生进行决策。

方法

收集了来自234名75岁及以上Non-STEMI患者的临床数据,并按照70:30的比例分为训练队列(164名患者)和验证队列(70名患者)。通过LASSO回归和十折交叉验证,确定了六个关键因素——年龄、脉搏(P, 每分钟心跳次数)、呼吸支持率、血糖(Glu)水平、经皮冠状动脉介入治疗(PCI)和β受体阻滞剂的使用——与三年死亡率显著相关。采用随机森林(RF)模型进行预测,其曲线下面积(AUC)为0.92,表现最佳。使用SHapley加性解释(SHAP)分析来确定影响死亡率的主要贡献特征,PCI、年龄和P(bpm)被确定为最关键因素。还开发了一个基于网络的计算器来支持临床决策。

结果

RF模型表现出最佳的预测性能(AUC = 0.92),显著优于其他模型。发现PCI、年龄和P(bpm)等关键特征在预测三年死亡率方面具有高度影响力。开发的基于网络的工具为临床医生提供了一个用户友好的平台,可将这些发现纳入个性化护理决策。

结论

本研究提出了一种强大的RF模型,用于预测75岁及以上Non-STEMI患者的三年死亡率。PCI、β受体阻滞剂的使用以及有效管理P(bpm)和Glu水平是改善患者预后的关键因素。基于网络的工具增强了个性化决策,帮助临床医生更好地分配资源,并为这一高危人群提供量身定制的干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验