Suppr超能文献

拉曼光谱与机器学习在乳腺癌诊断中的应用

Raman Spectroscopy and Machine Learning in the Diagnosis of Breast Cancer.

作者信息

Rao Sowndarya, Sharma Nikita, G Bhat Vyasraj, Kamath Vibha, Thakur Mehak, Melanthota Sindhoora Kaniyala, Das Subir, Dehury Budheswar, Mazumder Nirmal

机构信息

Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

出版信息

Lasers Med Sci. 2025 Sep 2;40(1):348. doi: 10.1007/s10103-025-04597-3.

Abstract

The most prevalent cancer in women worldwide, breast cancer, greatly benefits from early identification for better prognoses. But traditional diagnostic techniques, like biopsies and mammograms, can require invasive procedures and lack accuracy. The non-invasive, quick, and accurate nature of machine learning (ML) and Raman spectroscopy (RS) in breast cancer diagnoses are examined in this review. Combining machine learning's capacity to analyse intricate spectrum datasets with Raman spectroscopy's ability to produce molecular fingerprints of biochemical alterations linked to cancer improves diagnostic precision. Using the PRISMA methodology, studies published from 2017 to 2024 were examined, with an emphasis on those that reported sensitivity and specificity values greater than 80%. With sensitivity and specificity frequently over 90%, the nine included studies show that Raman spectroscopy combined with machine learning methods such as support vector machines, convolutional neural networks, and linear discriminant analysis yields good diagnostic metrics. The investigation highlights Raman spectroscopy's adaptability in analysing biological material, such as tissues and serum, with prospective uses extending to intraoperative, real-time evaluations. Although encouraging, there are still issues that need to be resolved, like the requirement for common frameworks, multi-centre validation, and affordable technology. A thorough assessment of RS-ML applications is given by this study, which also offers insights into its therapeutic potential and directs future studies in breast cancer detection. CLINICAL TRIAL NUMBER: Not applicable.

摘要

全球女性中最常见的癌症——乳腺癌,通过早期识别可极大地改善预后。但传统诊断技术,如活检和乳房X光检查,可能需要侵入性操作且缺乏准确性。本综述探讨了机器学习(ML)和拉曼光谱(RS)在乳腺癌诊断中具有的非侵入性、快速且准确的特性。将机器学习分析复杂光谱数据集的能力与拉曼光谱生成与癌症相关的生化改变分子指纹的能力相结合,可提高诊断精度。采用PRISMA方法,对2017年至2024年发表的研究进行了审查,重点关注那些报告敏感性和特异性值大于80%的研究。纳入的九项研究表明,拉曼光谱与支持向量机、卷积神经网络和线性判别分析等机器学习方法相结合,敏感性和特异性经常超过90%,产生了良好的诊断指标。该调查突出了拉曼光谱在分析生物材料(如组织和血清)方面的适应性,其潜在用途扩展到术中实时评估。尽管前景令人鼓舞,但仍有一些问题需要解决,如对通用框架的需求、多中心验证和价格合理的技术。本研究对RS-ML应用进行了全面评估,还提供了对其治疗潜力的见解,并指导未来乳腺癌检测的研究。临床试验编号:不适用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验