Suppr超能文献

具有市场趋势动态的深度动量网络。

Deep momentum networks with market trend dynamics.

作者信息

Song Jaemin, Jeon Jaegi

机构信息

Graduate School of Data Science, Chonnam National University, Gwangju, Republic of Korea.

出版信息

PLoS One. 2025 Sep 2;20(9):e0331391. doi: 10.1371/journal.pone.0331391. eCollection 2025.

Abstract

Time-series momentum (TSMOM) trading strategies manage positions based on the persistence of return trends. Although long short-term memory (LSTM) deep neural architectures can enhance TSMOM, their performance often deteriorates during abrupt market trend changes. This study aims to improve TSMOM performance, particularly at critical moments marked by significant shifts in long- and short-term trends. To achieve this, we combine short- and long-term signals into a comprehensive market-state representation, employing supervised learning to incorporate these market dynamics into the proposed model. In our experiments, we generate market-state features, referred to as MTDP scores, by numerically capturing changes in market trends via an extreme gradient boosting (XGBoost) process. These MTDP scores are then applied within an LSTM-based trading strategy. A backtest on 99 continuous futures (1995-2021) demonstrates that incorporating MTDP scores enhances the Sharpe ratio, indicating the effectiveness of embedding market-state information in TSMOM. Notably, an 8-week fast momentum look-back window performed best over stable periods (1995-2019). However, during extreme market downturns, such as the COVID-19 crisis, a 20-week fast momentum window not only outperformed shorter windows (4- and 8-week signals) but also recovered more rapidly. These findings suggest that TSMOM strategies can benefit from dynamically adjusting fast momentum windows, consistently generating profitable opportunities even amid turbulent conditions.

摘要

时间序列动量(TSMOM)交易策略基于回报趋势的持续性来管理头寸。尽管长短期记忆(LSTM)深度神经架构可以增强TSMOM,但它们的性能在市场趋势突然变化时往往会恶化。本研究旨在提高TSMOM的性能,特别是在长期和短期趋势发生重大转变的关键时刻。为了实现这一目标,我们将短期和长期信号组合成一个全面的市场状态表示,采用监督学习将这些市场动态纳入所提出的模型。在我们的实验中,我们通过极端梯度提升(XGBoost)过程数值捕捉市场趋势的变化,生成称为MTDP分数的市场状态特征。然后将这些MTDP分数应用于基于LSTM的交易策略中。对99个连续期货(1995 - 2021年)的回测表明,纳入MTDP分数提高了夏普比率,表明在TSMOM中嵌入市场状态信息的有效性。值得注意的是,在稳定时期(1995 - 2019年),8周的快速动量回顾窗口表现最佳。然而,在极端市场低迷时期,如新冠疫情危机期间,20周的快速动量窗口不仅优于较短的窗口(4周和8周信号),而且恢复得更快。这些发现表明,TSMOM策略可以从动态调整快速动量窗口中受益,即使在动荡的市场环境中也能持续产生盈利机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2476/12404547/135bdb42940f/pone.0331391.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验