da Costa Fernanda Andrade Tigre, Dufresne Alain, Parra Duclerc Fernandes
Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242-Cidade Universitária, São Paulo, SP BR 05508-900, Brazil.
Universite Grenoble Alpes, Grenoble INP Pagora (LGP2), 461 Rue de la Papeterie, Gières, Auvergne-Rhône-Alpes FR 38610, France.
ACS Omega. 2025 Aug 15;10(33):38182-38202. doi: 10.1021/acsomega.5c06115. eCollection 2025 Aug 26.
Polylactic acid (PLA), a widely used biopolymer, faces limitations in melt strength and miscibility with poly-(butylene adipate--terephthalate) (PBAT), requiring compatibilization strategies. This study uniquely investigates the combined effects of high dose of gamma irradiation (80-150 kGy) and low-aspect-ratio cellulose nanoparticles (CNPs) on PLA/PBAT blends, aiming to enhance compatibility and mechanical performance. Gamma irradiation induced chain scission and radical formation, improving blend compatibility but reducing mechanical properties at high doses due to excessive chain scission. Size exclusion chromatography revealed significant molecular weight reduction from chain scission, with partial recovery at higher doses due to cross-linking or recombination. Scanning electron microscopy (SEM) showed poor CNP dispersion in nonirradiated blends, causing agglomeration and weak interfacial adhesion, while irradiated blends exhibited improved CNP distribution and blend compatibility. Mechanical testing revealed no improvement in tensile strength with CNP addition, as agglomeration and poor dispersion hindered reinforcement, while irradiation-induced brittleness further reduced mechanical performance. Glass transition temperature and thermal stability decreased, as confirmed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. Rheological analysis showed that CNPs did not significantly enhance viscosity or modulus, likely due to their irregular shape and lack of network formation. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) highlighted interactions between CNPs and the polymer matrix, with irradiation altering the chemical environment. Contact angle measurements indicated enhanced hydrophilicity with CNP addition in irradiated blends, while biodegradation tests revealed accelerated degradation for irradiated and CNP-reinforced samples. This work innovates by evaluating gamma irradiation and CNPs as compatibilization strategies for PLA/PBAT blends, while identifying limitations for future optimization.
聚乳酸(PLA)是一种广泛使用的生物聚合物,在熔体强度以及与聚(己二酸丁二醇酯 - 对苯二甲酸丁二醇酯)(PBAT)的混溶性方面存在局限性,因此需要采用增容策略。本研究独特地探究了高剂量γ辐射(80 - 150 kGy)和低长径比纤维素纳米颗粒(CNP)对PLA/PBAT共混物的综合影响,旨在提高相容性和机械性能。γ辐射引发链断裂和自由基形成,改善了共混物的相容性,但由于过度的链断裂,在高剂量时会降低机械性能。尺寸排阻色谱显示由于链断裂分子量显著降低,在较高剂量时由于交联或重组会有部分恢复。扫描电子显微镜(SEM)表明,在未辐照的共混物中CNP分散性差,导致团聚和界面粘附力弱,而辐照后的共混物显示出改善的CNP分布和共混物相容性。机械测试表明,添加CNP后拉伸强度没有提高,因为团聚和分散性差阻碍了增强效果,而辐照引起的脆性进一步降低了机械性能。差示扫描量热法(DSC)和热重分析(TGA)分别证实玻璃化转变温度和热稳定性降低。流变学分析表明,CNP没有显著提高粘度或模量,这可能是由于其不规则形状和缺乏网络形成。傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)突出了CNP与聚合物基体之间的相互作用,辐照改变了化学环境。接触角测量表明,在辐照的共混物中添加CNP后亲水性增强,而生物降解测试表明辐照和CNP增强的样品降解加速。这项工作通过评估γ辐射和CNP作为PLA/PBAT共混物的增容策略进行了创新,同时确定了未来优化的局限性。