Suppr超能文献

基于集合的区间删失竞争风险结局的基因关联研究检验

Set-Based Tests for Genetic Association Studies with Interval-Censored Competing Risks Outcomes.

作者信息

Xu Zhichao, Choi Jaihee, Sun Ryan

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Avenue, Houston, 77030, Texas, USA.

Department of Statistics, Rice University, 6100 Main St., Houston, 77030, Texas, USA.

出版信息

Stat Biosci. 2024 Jul 13. doi: 10.1007/s12561-024-09448-3.

Abstract

Over the past decade, massive genetic compendiums such as the UK Biobank have gathered extensive genetic and phenotypic data that hold the potential to provide unparalleled insight into the genetic etiologies of various complex diseases. However, much of the disease information is collected as time-to-event outcomes in interval-censored form, and conventional tools for genetic association analysis are often not available for this type of data. For example, set-based inference for common and rare variants analysis is a fundamental investigation in germline genetics studies, but there is a lack of approaches that can perform set-based testing when the interval-censored outcome of interest is subject to the competing risk of another event. To address the need, this work proposes two set-based inference procedures for interval-censored data with competing risks, applicable to rare variants and general genotype sets as well. The interval-censored competing risks sequence kernel association test (crSKAT) is a variance components approach that is powerful when genetic variants in a set demonstrate heterogeneous signals. The interval-censored competing risks Burden (crBurden) test is more powerful when variant signals are homogeneous. Simulation studies show the superiority of the newly developed methods in comparison to ad-hoc alternatives, as evidenced by their ability to control the type I error rate and to improve power. The proposed tests are applied to the UK Biobank to search for genes associated with fracture risk while accounting for death as a competing outcome.

摘要

在过去十年中,诸如英国生物银行这样的大规模基因数据集已经收集了广泛的基因和表型数据,这些数据有可能为各种复杂疾病的遗传病因提供前所未有的见解。然而,许多疾病信息是以区间删失形式的事件发生时间结局来收集的,而传统的基因关联分析工具通常不适用于这类数据。例如,对常见和罕见变异分析的基于集合的推断是种系遗传学研究中的一项基本调查,但当感兴趣的区间删失结局受到另一事件的竞争风险影响时,缺乏能够进行基于集合检验的方法。为满足这一需求,这项工作提出了两种针对具有竞争风险的区间删失数据的基于集合的推断程序,它们也适用于罕见变异和一般基因型集合。区间删失竞争风险序列核关联检验(crSKAT)是一种方差成分方法,当集合中的基因变异表现出异质信号时,它具有强大的功效。区间删失竞争风险负担(crBurden)检验在变异信号同质时功效更强。模拟研究表明,与临时替代方法相比,新开发的方法具有优越性,这体现在它们能够控制I型错误率并提高功效。所提出的检验方法应用于英国生物银行,以寻找与骨折风险相关的基因,同时将死亡作为竞争结局加以考虑。

相似文献

3
Variance-components tests for genetic association with multiple interval-censored outcomes.
Stat Med. 2024 Jun 15;43(13):2560-2574. doi: 10.1002/sim.10081. Epub 2024 Apr 18.
7
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
8
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
9
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.
Alzheimers Dement. 2021 Apr;17(4):704-715. doi: 10.1002/alz.12215. Epub 2021 Jan 21.
10
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

本文引用的文献

1
Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies.
Nat Genet. 2023 Jan;55(1):154-164. doi: 10.1038/s41588-022-01225-6. Epub 2022 Dec 23.
2
Inference for set-based effects in genetic association studies with interval-censored outcomes.
Biometrics. 2023 Jun;79(2):1573-1585. doi: 10.1111/biom.13636. Epub 2022 Feb 24.
3
Multi-marker genetic association and interaction tests with interval-censored survival outcomes.
Genet Epidemiol. 2021 Dec;45(8):860-873. doi: 10.1002/gepi.22429. Epub 2021 Sep 2.
4
Economic burden of osteoporotic fractures in US managed care enrollees.
Am J Manag Care. 2020 May 1;26(5):e142-e149. doi: 10.37765/ajmc.2020.43156.
5
Ubiquitylomes Analysis of the Whole blood in Postmenopausal Osteoporosis Patients and healthy Postmenopausal Women.
Orthop Surg. 2019 Dec;11(6):1187-1200. doi: 10.1111/os.12556. Epub 2019 Nov 25.
6
Death Certification: Errors and Interventions.
Clin Med Res. 2020 Mar;18(1):21-26. doi: 10.3121/cmr.2019.1496. Epub 2019 Oct 9.
7
The UK Biobank resource with deep phenotyping and genomic data.
Nature. 2018 Oct;562(7726):203-209. doi: 10.1038/s41586-018-0579-z. Epub 2018 Oct 10.
8
Ensembl 2018.
Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761. doi: 10.1093/nar/gkx1098.
9
Death Certification Errors and the Effect on Mortality Statistics.
Public Health Rep. 2017 Nov/Dec;132(6):669-675. doi: 10.1177/0033354917736514. Epub 2017 Nov 1.
10
The cumulative burden of surviving childhood cancer: an initial report from the St Jude Lifetime Cohort Study (SJLIFE).
Lancet. 2017 Dec 9;390(10112):2569-2582. doi: 10.1016/S0140-6736(17)31610-0. Epub 2017 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验