Suppr超能文献

腹腔镜手术中人体肝脏的非刚性图像体积配准

Non-rigid image-volume registration for human livers in laparoscopic surgery.

作者信息

Cao Zhenggang, Xie Le, Yang Yuchen

机构信息

Institute of Forming Technology & Equipment and the Institute of Medical Robot, Shanghai Jiao Tong University, Shanghai, China.

Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Quant Imaging Med Surg. 2025 Sep 1;15(9):8440-8456. doi: 10.21037/qims-2025-387. Epub 2025 Aug 18.

Abstract

BACKGROUND

The fusion of intraoperative 2D laparoscopic images with preoperative 3D scans offers significant advantages in minimally invasive surgery, such as improved spatial understanding and enhanced navigation. This study aims to enable augmented reality for deformable organs through accurate 2D-3D registration. However, achieving real-time and precise alignment remains a major challenge due to organ deformation, occlusion, and the difficulty of estimating camera parameters from monocular images.

METHODS

We introduce a non-rigid image-volume registration (NRIVR) framework designed specifically for deformable human organs. Our approach employs a long short-term memory-based camera estimation neural network (LCENN) to predict camera poses directly from 2D anatomical contours extracted from laparoscopic images. By leveraging a differentiable mapping from 2D boundaries to camera parameters, the system enables real-time inference. Non-rigid registration is then performed in 2D space by integrating both the projected mesh and estimated deformation fields, ensuring consistent alignment across views.

RESULTS

Our experiments, evaluating the contour mapping neural network on laparoscopic images from cholecystectomy, showed that using an LCENN can efficiently predict the camera pose from 2D boundaries, achieving a minimal rotational error of 0.35±0.44° and a translational error of 0.51±0.31 mm. Consequently, our proposed framework effectively achieved 2D-3D registration on a clinical dataset, with an average target registration error of 2.74±1.51 mm.

CONCLUSIONS

These results validate the feasibility and effectiveness of the proposed method for real-time 2D-3D registration in laparoscopic surgery, paving the way for enhanced image guidance in clinical workflows.

摘要

背景

术中二维腹腔镜图像与术前三维扫描的融合在微创手术中具有显著优势,如改善空间理解和增强导航。本研究旨在通过精确的二维-三维配准实现可变形器官的增强现实。然而,由于器官变形、遮挡以及从单目图像估计相机参数的困难,实现实时精确对准仍然是一个重大挑战。

方法

我们引入了一个专门为可变形人体器官设计的非刚性图像-体积配准(NRIVR)框架。我们的方法采用基于长短期记忆的相机估计神经网络(LCENN),直接从腹腔镜图像中提取的二维解剖轮廓预测相机姿态。通过利用从二维边界到相机参数的可微映射,该系统能够进行实时推理。然后,通过整合投影网格和估计的变形场在二维空间中进行非刚性配准,确保跨视图的一致对准。

结果

我们对胆囊切除术腹腔镜图像上的轮廓映射神经网络进行评估的实验表明,使用LCENN可以从二维边界有效地预测相机姿态,实现最小旋转误差为0.35±0.44°,平移误差为0.51±0.31毫米。因此,我们提出的框架在临床数据集上有效地实现了二维-三维配准,平均目标配准误差为2.74±1.51毫米。

结论

这些结果验证了所提出的方法在腹腔镜手术中进行实时二维-三维配准的可行性和有效性,为临床工作流程中增强图像引导铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df65/12397628/a15d3308ca10/qims-15-09-8440-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验