Weniger Eric, Sommaruga Ruben
Department of Ecology, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
Ecosystems. 2025;28(5):56. doi: 10.1007/s10021-025-01003-5. Epub 2025 Aug 29.
Anoxia in lakes has intensified in recent decades, threatening ecosystem functioning. Yet, the mechanisms driving long-term trends in anoxia intensity and duration are complex, especially in managed ecosystems, where field data are limited. Using a 50-year dataset from a lake affected by both eutrophication and restoration measures, we examined annual oxygen dynamics, assessing the effect of external drivers, such as climate warming and hypolimnetic withdrawal effectiveness, and of in-lake processes influencing anoxia. Breakpoint analysis revealed a major ecosystem regime shift around 1996, reversing the earlier recovery trend. Between 1972 and 1996, both the anoxic factor and hypolimnetic total phosphorus concentrations declined, but both rose significantly afterward, with phosphorus concentrations eventually exceeding pre-restoration levels, despite declining watershed inputs. This reversal coincided with a marked increase in thermal stratification duration, which likely intensified deoxygenation by limiting oxygen renewal in the hypolimnion. Our results also show that higher anoxia levels in 1 year significantly reinforced anoxia in the following year, suggesting a self-sustaining feedback mechanism. In addition, our results provide evidence that anaerobic mineralization is important to this feedback, accumulating reduced compounds that further enhance deoxygenation. Despite management efforts, the intensification of internal phosphorus loading and the accumulation of reduced substances have progressively diminished the effectiveness of the cost-effective hypolimnetic withdrawal system implemented since 1970. Our findings demonstrate how the emergence of reinforcing feedbacks, linking oxygen depletion, internal phosphorus release, and climate-driven stratification, can undermine traditional restoration strategies. This highlights the urgent need for adaptive management that explicitly addresses these interacting mechanisms among oxygen dynamics, nutrient cycling, and climate warming.
The online version contains supplementary material available at 10.1007/s10021-025-01003-5.
近几十年来,湖泊中的缺氧情况加剧,威胁着生态系统的功能。然而,驱动缺氧强度和持续时间长期趋势的机制很复杂,尤其是在管理的生态系统中,实地数据有限。利用一个受富营养化和恢复措施影响的湖泊的50年数据集,我们研究了年度氧气动态,评估了外部驱动因素(如气候变暖和底栖水抽取效率)以及影响缺氧的湖内过程的影响。断点分析揭示了1996年左右生态系统的重大转变,扭转了早期的恢复趋势。1972年至1996年期间,缺氧因子和底栖水总磷浓度均下降,但此后均显著上升,尽管流域输入量下降,但磷浓度最终超过了恢复前的水平。这种逆转与热分层持续时间的显著增加同时发生,这可能通过限制底层水中的氧气更新而加剧了脱氧。我们的结果还表明,一年中较高的缺氧水平会显著增强次年的缺氧情况,这表明存在一种自我维持的反馈机制。此外,我们的结果提供了证据表明厌氧矿化对这种反馈很重要,积累了还原化合物,进一步增强了脱氧作用。尽管进行了管理努力,但内部磷负荷的加剧和还原物质的积累逐渐削弱了自1970年以来实施的具有成本效益的底栖水抽取系统的有效性。我们的研究结果表明,将氧气消耗、内部磷释放和气候驱动的分层联系起来的强化反馈的出现,如何能够破坏传统的恢复策略。这凸显了迫切需要进行适应性管理,明确解决氧气动态、营养物质循环和气候变暖之间的这些相互作用机制。
在线版本包含可在10.100/s10021-025-01003-5获取的补充材料。