Lange Kenneth
Departments of Computational Medicine, Human Genetics, and Statistics, University of California, Los Angeles, CA 90095, USA.
Algorithms. 2024 Mar;17(3). doi: 10.3390/a17030095. Epub 2024 Feb 22.
The current paper proposes and tests algorithms for finding the diameter of a compact convex set and the farthest point in the set to another point. For these two nonconvex problems, I construct Frank-Wolfe and projected gradient ascent algorithms. Although these algorithms are guaranteed to go uphill, they can become trapped by local maxima. To avoid this defect, I investigate a homotopy method that gradually deforms a ball into the target set. Motivated by the Frank-Wolfe algorithm, I also find the support function of the intersection of a convex cone and a ball centered at the origin and elaborate a known bisection algorithm for calculating the support function of a convex sublevel set. The Frank-Wolfe and projected gradient algorithms are tested on five compact convex sets: (a) the box whose coordinates range between -1 and 1, (b) the intersection of the unit ball and the non-negative orthant, (c) the probability simplex, (d) the Manhattan-norm unit ball, and (e) a sublevel set of the elastic net penalty. Frank-Wolfe and projected gradient ascent are about equally fast on these test problems. Ignoring homotopy, the Frank-Wolfe algorithm is more reliable. However, homotopy allows projected gradient ascent to recover from its failures.
本文提出并测试了用于寻找紧致凸集直径以及该集合中到另一点最远点的算法。针对这两个非凸问题,我构建了弗兰克 - 沃尔夫算法和投影梯度上升算法。尽管这些算法能保证向上行进,但它们可能会陷入局部最大值。为避免此缺陷,我研究了一种同伦方法,该方法将一个球逐渐变形为目标集。受弗兰克 - 沃尔夫算法的启发,我还求出了凸锥与以原点为中心的球的交集的支撑函数,并阐述了一种用于计算凸次水平集支撑函数的已知二分算法。在五个紧致凸集上对弗兰克 - 沃尔夫算法和投影梯度算法进行了测试:(a) 坐标范围在 -1 到 1 之间的盒子,(b) 单位球与非负卦限的交集,(c) 概率单纯形,(d) 曼哈顿范数单位球,以及 (e) 弹性网惩罚的一个次水平集。在这些测试问题上,弗兰克 - 沃尔夫算法和投影梯度上升的速度大致相同。忽略同伦的情况下,弗兰克 - 沃尔夫算法更可靠。然而,同伦使投影梯度上升能够从失败中恢复。