Won Joong-Ho, Lange Kenneth, Xu Jason
Department of Statistics, Seoul National University, Seoul, Republic of Korea.
Departments of Computational Medicine, Human Genetics and Statistics, University of California, Los Angeles, California, USA.
Optim Lett. 2023 Jun;17(5):1133-1159. doi: 10.1007/s11590-022-01919-0. Epub 2022 Sep 4.
The task of projecting onto norm balls is ubiquitous in statistics and machine learning, yet the availability of actionable algorithms for doing so is largely limited to the special cases of . In this paper, we introduce novel, scalable methods for projecting onto the -ball for general . For , we solve the univariate Lagrangian dual via a dual Newton method. We then carefully design a bisection approach For , presenting theoretical and empirical evidence of zero or a small duality gap in the non-convex case. The success of our contributions is thoroughly assessed empirically, and applied to large-scale regularized multi-task learning and compressed sensing. The code implementing our methods is publicly available on Github.
投影到范数球上的任务在统计学和机器学习中无处不在,但用于此目的的可行算法在很大程度上仅限于特殊情况。在本文中,我们针对一般的情况引入了投影到 - 球上的新颖、可扩展方法。对于 ,我们通过对偶牛顿法求解单变量拉格朗日对偶问题。然后,我们精心设计了一种二分法用于 ,给出了非凸情况下对偶间隙为零或很小的理论和经验证据。我们贡献的成功通过实证进行了全面评估,并应用于大规模正则化多任务学习和压缩感知。实现我们方法的代码在Github上公开可用。