Ock Il Woo, Zhou Yihao, Zhao Xun, Manshaii Farid, Chen Jun
Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
ACS Energy Lett. 2024 Apr 12;9(4):1701-1709. doi: 10.1021/acsenergylett.4c00412. Epub 2024 Mar 25.
Extracting energy from ocean waves for electrolysis, while highly desirable, poses significant challenges, especially in achieving high current generation for sustainable water splitting. This work introduces an innovative high-current ocean wave energy harvesting system, employing a self-floating magnetoelastic generator (MEG) ball network designed for autonomous seawater electrolysis and hydrogen (H) production. Leveraging the magnetoelastic effect, the MEG ball network is naturally waterproof and can generate a high current density of 0.24 mA cm, paired with a low internal resistance of 9 Ω at a wave frequency of 2 Hz. Its spherical design ensures exceptional mechanical durability, maintaining consistent electrical output even under extremely humid and harsh conditions. In practical applications, this MEG ball network system can continuously produce H at a rate of 0.76 × 10 mL min. These results underscore its potential as a viable technology for seawater electrolysis and large-scale H production.
从海浪中提取能量用于电解,虽然非常可取,但也带来了重大挑战,尤其是在实现可持续水分解所需的高电流产生方面。这项工作引入了一种创新的高电流海浪能量收集系统,该系统采用了一种自浮式磁弹性发电机(MEG)球网,专为自主海水电解和制氢而设计。利用磁弹性效应,MEG球网具有天然的防水性能,在2Hz的波频下,能产生0.24 mA/cm的高电流密度,且内部电阻低至9Ω。其球形设计确保了卓越的机械耐久性,即使在极端潮湿和恶劣的条件下也能保持稳定的电力输出。在实际应用中,这种MEG球网系统能够以0.76×10 mL/min的速率持续产生氢气。这些结果凸显了其作为海水电解和大规模制氢可行技术的潜力。