Yousefi Bardia, Khansari Mélina, Trask Ryan, Tallon Patrick, Carino Carina, Afrasiyabi Arman, Kundra Vikas, Ma Lan, Ren Lei, Farahani Keyvan, Hershman Michelle
Department of Biocomputational Engineering Program, University of Maryland, College Park, MD 20742 USA.
Yale University, New Haven, CT 06520 USA.
IEEE Trans Instrum Meas. 2025;74. doi: 10.1109/tim.2025.3545983. Epub 2025 Mar 3.
High-dimensional (HD) imaging biomarkers offer enhanced imaging characterization, yet their abundance impedes system performance. The methods that embed HD onto lower dimensional (LD) space address this challenge effectively, particularly for multimodal scenarios. In this study, we proposed different embedding approaches to tackle such a problem. The shortest path algorithm for isometric mapping (Isomap) is modified by an additional constraint using the Parzen-Rosenblatt (PR) density function. This aids in maintaining the uniformity of the graphs through HD to LD projections via Isomap. Then, we proposed Gaussian and Kaniadakis entropy-driven, , Gaussian embedding techniques to interact with multimodal imaging phenotypic biomarkers. We comprehensively tested our methods on a combination of multiple imaging datasets related to various diseases across multiple modalities, i.e., computed tomography (CT), positron emission tomography (PET), X-ray, magnetic resonance imaging (MRI), ultrasound, and thermography, for an overall of 5158 cases. Our findings demonstrate that our embedding methods effectively transform HD to LD attributes comparatively while retaining vital information and performing phenotypic interactions. Our embedding techniques achieved the maximum accuracies of 78.5% (±4.4), 88.4% (±1.4), and 61.4% (±11.4), 80.9% (±5.8), 80.3% (±5.5), 82.9% (±2.3), and 63.2% (±7.7) for three lung cancer data, pneumonia, breast cancer ultrasound, thermography, and glioblastoma (GBM) diseases, respectively. This accuracy improved with -Gaussian and Gaussian embedding yielded 79.7%(±2.7) and 80.4%(±3.7) for lung cancer and 65.01% (±3.7) and 62.6% (±7.8) for GBM, respectively. The results of survival models and Kaplan-Meier survival curve also indicate the notable ability of our embedding approaches to distinguish between patients with different median hazards indicating the preservation of HD multimodal imaging characteristics for precision medicine.
高维(HD)成像生物标志物可提供增强的成像特征,但它们的丰富性会阻碍系统性能。将高维数据嵌入到低维(LD)空间的方法有效地解决了这一挑战,特别是在多模态场景中。在本研究中,我们提出了不同的嵌入方法来解决此类问题。等距映射(Isomap)的最短路径算法通过使用Parzen-Rosenblatt(PR)密度函数的附加约束进行修改。这有助于通过Isomap从高维到低维投影来保持图形的均匀性。然后,我们提出了高斯和卡尼亚达基斯熵驱动的高斯嵌入技术,以与多模态成像表型生物标志物进行交互。我们在多个模态下与各种疾病相关的多个成像数据集(即计算机断层扫描(CT)、正电子发射断层扫描(PET)、X射线、磁共振成像(MRI)、超声和热成像)的组合上全面测试了我们的方法,总共5158例病例。我们的研究结果表明,我们的嵌入方法在保留重要信息并进行表型交互的同时,有效地将高维属性相对地转换为低维属性。我们的嵌入技术在三种肺癌数据、肺炎、乳腺癌超声、热成像和胶质母细胞瘤(GBM)疾病中分别达到了78.5%(±4.4)、88.4%(±1.4)、61.4%(±11.4)、80.9%(±5.8)、80.3%(±5.5)、82.9%(±2.3)和63.2%(±7.7)的最大准确率。这种准确率有所提高,高斯和高斯嵌入分别使肺癌的准确率达到79.7%(±2.7)和80.4%(±3.7),胶质母细胞瘤的准确率分别达到65.01%(±3.7)和62.6%(±7.8)。生存模型和Kaplan-Meier生存曲线的结果也表明,我们的嵌入方法具有显著的能力来区分具有不同中位风险的患者,这表明保留了用于精准医学的高维多模态成像特征。