文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高维生物数据中的结构和转变可视化。

Visualizing structure and transitions in high-dimensional biological data.

机构信息

Department of Mathematics and Statistics, Utah State University, Logan, UT, USA.

Cardiovascular Research Center, section Cardiology, Department of Internal Medicine, Yale University, New Haven, CT, USA.

出版信息

Nat Biotechnol. 2019 Dec;37(12):1482-1492. doi: 10.1038/s41587-019-0336-3. Epub 2019 Dec 3.


DOI:10.1038/s41587-019-0336-3
PMID:31796933
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7073148/
Abstract

The high-dimensional data created by high-throughput technologies require visualization tools that reveal data structure and patterns in an intuitive form. We present PHATE, a visualization method that captures both local and global nonlinear structure using an information-geometric distance between data points. We compare PHATE to other tools on a variety of artificial and biological datasets, and find that it consistently preserves a range of patterns in data, including continual progressions, branches and clusters, better than other tools. We define a manifold preservation metric, which we call denoised embedding manifold preservation (DEMaP), and show that PHATE produces lower-dimensional embeddings that are quantitatively better denoised as compared to existing visualization methods. An analysis of a newly generated single-cell RNA sequencing dataset on human germ-layer differentiation demonstrates how PHATE reveals unique biological insight into the main developmental branches, including identification of three previously undescribed subpopulations. We also show that PHATE is applicable to a wide variety of data types, including mass cytometry, single-cell RNA sequencing, Hi-C and gut microbiome data.

摘要

高通量技术产生的高维数据需要可视化工具,以直观的形式揭示数据结构和模式。我们提出了 PHATE,这是一种可视化方法,使用数据点之间的信息几何距离来捕捉局部和全局非线性结构。我们在各种人工和生物数据集上比较了 PHATE 和其他工具,发现它始终能够比其他工具更好地保留数据中的一系列模式,包括连续的进展、分支和聚类。我们定义了一种流形保持度量,称为去噪嵌入流形保持(DEMaP),并表明 PHATE 生成的低维嵌入在去噪方面比现有的可视化方法表现更好。对人类胚层分化的新生成的单细胞 RNA 测序数据集的分析表明,PHATE 如何揭示独特的生物学见解,包括对主要发育分支的鉴定,包括三个以前未描述的亚群。我们还表明,PHATE 适用于各种类型的数据,包括质谱流式细胞术、单细胞 RNA 测序、Hi-C 和肠道微生物组数据。

相似文献

[1]
Visualizing structure and transitions in high-dimensional biological data.

Nat Biotechnol. 2019-12-3

[2]
Visualizing and Interpreting Single-Cell Gene Expression Datasets with Similarity Weighted Nonnegative Embedding.

Cell Syst. 2018-12-5

[3]
Multiscale PHATE identifies multimodal signatures of COVID-19.

Nat Biotechnol. 2022-5

[4]
Generalizable and Scalable Visualization of Single-Cell Data Using Neural Networks.

Cell Syst. 2018-6-20

[5]
A robust nonlinear low-dimensional manifold for single cell RNA-seq data.

BMC Bioinformatics. 2020-7-21

[6]
Dimensionality reduction for visualizing high-dimensional biological data.

Biosystems. 2022-10

[7]
Archetype analysis and the PHATE algorithm as methods to describe and visualize pregnant women's levels of physical activity knowledge.

BMC Public Health. 2024-4-15

[8]
Multi-view manifold learning of human brain-state trajectories.

Nat Comput Sci. 2023-3

[9]
Visualization and cellular hierarchy inference of single-cell data using SPADE.

Nat Protoc. 2016-6-16

[10]
Assessing single-cell transcriptomic variability through density-preserving data visualization.

Nat Biotechnol. 2021-6

引用本文的文献

[1]
Measuring Subtle HD Data Representation and Multimodal Imaging Phenotype Embedding for Precision Medicine.

IEEE Trans Instrum Meas. 2025

[2]
Benchmarking of dimensionality reduction methods to capture drug response in transcriptome data.

Sci Rep. 2025-9-1

[3]
Boosting data interpretation with GIBOOST to enhance visualization of complex high-dimensional data.

Brief Bioinform. 2025-7-2

[4]
Quantum Annealing for Enhanced Feature Selection in Single-Cell RNA Sequencing Data Analysis.

ArXiv. 2025-8-15

[5]
Conserved noncoding cis elements associated with hibernation modulate metabolic and behavioral adaptations in mice.

Science. 2025-7-31

[6]
A Hybrid Sequential Feature Selection Approach for Identifying New Potential mRNA Biomarkers for Usher Syndrome Using Machine Learning.

Biomolecules. 2025-7-4

[7]
Chronic alcohol consumption induces phenotypic and functional alterations consistent with a hyper-inflammatory state in peripheral blood mononuclear cell-derived microglia in a rhesus macaque model.

Brain Behav Immun. 2025-7-26

[8]
Single-cell image-based screens identify host regulators of Ebola virus infection dynamics.

Nat Microbiol. 2025-7-24

[9]
A deep single cell mass cytometry approach to capture canonical and noncanonical cell cycle states.

bioRxiv. 2025-7-10

[10]
Cluster-independent multiscale marker identification in single-cell RNA-seq data using localized marker detector (LMD).

Commun Biol. 2025-7-16

本文引用的文献

[1]
A comparison of single-cell trajectory inference methods.

Nat Biotechnol. 2019-4-1

[2]
PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells.

Genome Biol. 2019-3-19

[3]
Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data.

Nat Methods. 2019-2-11

[4]
Dimensionality reduction for visualizing single-cell data using UMAP.

Nat Biotechnol. 2018-12-3

[5]
Single-cell RNA sequencing technologies and bioinformatics pipelines.

Exp Mol Med. 2018-8-7

[6]
Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.

Cell. 2018-6-28

[7]
Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types.

Nat Commun. 2017-11-23

[8]
powsimR: power analysis for bulk and single cell RNA-seq experiments.

Bioinformatics. 2017-11-1

[9]
Splatter: simulation of single-cell RNA sequencing data.

Genome Biol. 2017-9-12

[10]
Reversed graph embedding resolves complex single-cell trajectories.

Nat Methods. 2017-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索