Department of Mathematics and Statistics, Utah State University, Logan, UT, USA.
Cardiovascular Research Center, section Cardiology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
Nat Biotechnol. 2019 Dec;37(12):1482-1492. doi: 10.1038/s41587-019-0336-3. Epub 2019 Dec 3.
The high-dimensional data created by high-throughput technologies require visualization tools that reveal data structure and patterns in an intuitive form. We present PHATE, a visualization method that captures both local and global nonlinear structure using an information-geometric distance between data points. We compare PHATE to other tools on a variety of artificial and biological datasets, and find that it consistently preserves a range of patterns in data, including continual progressions, branches and clusters, better than other tools. We define a manifold preservation metric, which we call denoised embedding manifold preservation (DEMaP), and show that PHATE produces lower-dimensional embeddings that are quantitatively better denoised as compared to existing visualization methods. An analysis of a newly generated single-cell RNA sequencing dataset on human germ-layer differentiation demonstrates how PHATE reveals unique biological insight into the main developmental branches, including identification of three previously undescribed subpopulations. We also show that PHATE is applicable to a wide variety of data types, including mass cytometry, single-cell RNA sequencing, Hi-C and gut microbiome data.
高通量技术产生的高维数据需要可视化工具,以直观的形式揭示数据结构和模式。我们提出了 PHATE,这是一种可视化方法,使用数据点之间的信息几何距离来捕捉局部和全局非线性结构。我们在各种人工和生物数据集上比较了 PHATE 和其他工具,发现它始终能够比其他工具更好地保留数据中的一系列模式,包括连续的进展、分支和聚类。我们定义了一种流形保持度量,称为去噪嵌入流形保持(DEMaP),并表明 PHATE 生成的低维嵌入在去噪方面比现有的可视化方法表现更好。对人类胚层分化的新生成的单细胞 RNA 测序数据集的分析表明,PHATE 如何揭示独特的生物学见解,包括对主要发育分支的鉴定,包括三个以前未描述的亚群。我们还表明,PHATE 适用于各种类型的数据,包括质谱流式细胞术、单细胞 RNA 测序、Hi-C 和肠道微生物组数据。
Nat Biotechnol. 2019-12-3
Nat Biotechnol. 2022-5
BMC Bioinformatics. 2020-7-21
Biosystems. 2022-10
Nat Comput Sci. 2023-3
Nat Protoc. 2016-6-16
IEEE Trans Instrum Meas. 2025
Brief Bioinform. 2025-7-2
Nat Microbiol. 2025-7-24
Nat Biotechnol. 2019-4-1
Nat Methods. 2019-2-11
Nat Biotechnol. 2018-12-3
Exp Mol Med. 2018-8-7
Bioinformatics. 2017-11-1
Genome Biol. 2017-9-12
Nat Methods. 2017-10