Raven Frank, Vankampen Anna A, He Annie, Aton Sara J
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019.
bioRxiv. 2025 Jul 24:2025.07.23.666335. doi: 10.1101/2025.07.23.666335.
GABAergic interneurons regulate circuit dynamics in hippocampal structures such as CA1 that appear to be essential for memory processing. The dentate gyrus (DG) is known to play a role in pattern recognition and spatial working memory. However, the role of the DG in different stages of long-term spatial memory is poorly understood. Moreover, the roles of the predominant interneuron subtypes within the DG - somatostatin-expressing (SST+) and parvalbumin-expressing (PV+) - in different stages of memory processing are unknown. We tested how chemogenetic manipulation of DG SST+ and PV+ interneurons in mice influences the encoding, consolidation, and retrieval of hippocampus-dependent object-location memory (OLM). We find that activation of DG SST+ interneurons impairs both OLM encoding and retrieval, dramatically suppresses DG granule cell cFos expression, and (in the case of encoding) suppresses downstream CA1 network activity. Among individual mice, the degree of DG granule cell suppression is proportional to the extent of SST+ interneuron activation, and predicts the extent of OLM deficits. In striking contrast, PV+ interneuron activation selectively disrupts encoding, but not retrieval, of OLM, and minimally impacts DG or downstream hippocampal network activity. These findings demonstrate that regulation of the DG network by SST+ and PV+ interneurons differentially contributes to the various stages of spatial memory processing, and suggest that distinct network mechanisms are engaged in the hippocampus during each processing stage.
γ-氨基丁酸能中间神经元调节海马结构(如CA1)中的回路动力学,而这些回路动力学似乎对记忆处理至关重要。齿状回(DG)在模式识别和空间工作记忆中发挥作用。然而,DG在长期空间记忆不同阶段的作用却知之甚少。此外,DG中主要的中间神经元亚型——表达生长抑素的(SST+)和表达小白蛋白的(PV+)——在记忆处理不同阶段的作用尚不清楚。我们测试了对小鼠DG中SST+和PV+中间神经元进行化学遗传学操纵如何影响海马体依赖性物体位置记忆(OLM)的编码、巩固和提取。我们发现,激活DG的SST+中间神经元会损害OLM的编码和提取,显著抑制DG颗粒细胞的cFos表达,并且(在编码情况下)抑制下游CA1网络活动。在个体小鼠中,DG颗粒细胞的抑制程度与SST+中间神经元的激活程度成正比,并可预测OLM缺陷的程度。与之形成鲜明对比的是,激活PV+中间神经元会选择性地破坏OLM的编码,但不影响提取,并且对DG或下游海马网络活动的影响最小。这些发现表明,SST+和PV+中间神经元对DG网络的调节在空间记忆处理的各个阶段有不同的作用,并表明在每个处理阶段海马体中都有不同的网络机制参与。