Watson Jake F, Vargas-Barroso Victor, Morse-Mora Rebecca J, Navas-Olive Andrea, Tavakoli Mojtaba R, Danzl Johann G, Tomschik Matthias, Rössler Karl, Jonas Peter
Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria.
Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria.
Cell. 2025 Jan 23;188(2):501-514.e18. doi: 10.1016/j.cell.2024.11.022. Epub 2024 Dec 11.
Our brain has remarkable computational power, generating sophisticated behaviors, storing memories over an individual's lifetime, and producing higher cognitive functions. However, little of our neuroscience knowledge covers the human brain. Is this organ truly unique, or is it a scaled version of the extensively studied rodent brain? Combining multicellular patch-clamp recording with expansion-based superresolution microscopy and full-scale modeling, we determined the cellular and microcircuit properties of the human hippocampal CA3 region, a fundamental circuit for memory storage. In contrast to neocortical networks, human hippocampal CA3 displayed sparse connectivity, providing a circuit architecture that maximizes associational power. Human synapses showed unique reliability, high precision, and long integration times, exhibiting both species- and circuit-specific properties. Together with expanded neuronal numbers, these circuit characteristics greatly enhanced the memory storage capacity of CA3. Our results reveal distinct microcircuit properties of the human hippocampus and begin to unravel the inner workings of our most complex organ.
我们的大脑拥有非凡的计算能力,能产生复杂行为,在个体一生中存储记忆,并产生更高层次的认知功能。然而,我们的神经科学知识很少涉及人类大脑。这个器官真的独一无二,还是只是经过广泛研究的啮齿动物大脑的放大版本?通过将多细胞膜片钳记录与基于扩展的超分辨率显微镜和全尺度建模相结合,我们确定了人类海马体CA3区的细胞和微电路特性,这是一个用于记忆存储的基本电路。与新皮质网络不同,人类海马体CA3区表现出稀疏连接性,提供了一种能最大化联想能力的电路架构。人类突触表现出独特的可靠性、高精度和长整合时间,展现出物种和电路特异性属性。这些电路特征与增加的神经元数量一起,极大地增强了CA3区的记忆存储能力。我们的研究结果揭示了人类海马体独特的微电路特性,并开始揭示我们这个最复杂器官的内部运作机制。