Narsing Rao Manik Prabhu, Quadri Syed Raziuddin, Sathish Manda, Quach Ngoc Tung, Li Wen-Jun, Thamchaipenet Arinthip
Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Centro de Investigación e Innovación, Huechuraba, Chile.
Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia.
Front Pharmacol. 2025 Aug 15;16:1634207. doi: 10.3389/fphar.2025.1634207. eCollection 2025.
Marine are prolific producers of diverse bioactive secondary metabolites, making them vital for drug discovery. Traditional cultivation and bioassay-guided isolation techniques often lead to the rediscovery of the same compounds, revealing the limitations of these traditional approaches and emphasizing the need for more advanced methods. The emergence of omics technologies such as genomics, metagenomics, transcriptomics, and metabolomics has dramatically enhanced the ability to investigate microorganisms by providing detailed insights into their biosynthetic gene clusters, metabolic pathways, and regulatory mechanisms. These comprehensive tools facilitate the discovery and functional analysis of new bioactive compounds by revealing the genetic blueprints underlying their biosynthesis. Omics and function-driven techniques like heterologous expression, analytical techniques (including high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy), and culture condition optimization have enabled access to previously silent or cryptic gene clusters, expanding the chemical diversity available for exploration. This review emphasizes the integration of omics-based insights with function-driven methodologies and innovative culture techniques, forming a holistic approach to unlock the extensive biosynthetic capabilities of marine . Combining these strategies holds great promise for discovering new marine-derived compounds with potential therapeutic applications.
海洋生物是多种生物活性次生代谢产物的丰富生产者,这使它们对于药物发现至关重要。传统的培养和生物测定引导的分离技术常常导致相同化合物的重新发现,揭示了这些传统方法的局限性,并强调了对更先进方法的需求。基因组学、宏基因组学、转录组学和代谢组学等组学技术的出现,通过深入了解微生物的生物合成基因簇、代谢途径和调控机制,极大地增强了对微生物的研究能力。这些综合工具通过揭示生物活性化合物生物合成的遗传蓝图,促进了新生物活性化合物的发现和功能分析。组学和功能驱动技术,如异源表达、分析技术(包括高分辨率质谱和核磁共振光谱)以及培养条件优化,已能够获取以前沉默或隐秘的基因簇,扩大了可供探索的化学多样性。本综述强调将基于组学的见解与功能驱动方法和创新培养技术相结合,形成一种整体方法来释放海洋生物广泛的生物合成能力。结合这些策略对于发现具有潜在治疗应用的新型海洋来源化合物具有巨大潜力。