Liberatore Nicola, Felizzato Giorgio, Mengali Sandro, Viola Roberto, Romolo Francesco Saverio
Consorzio CREO, L'Aquila, Italy.
Department of Law, University of Bergamo, Bergamo, Italy.
Forensic Sci Res. 2025 Jan 20;10(3):owaf002. doi: 10.1093/fsr/owaf002. eCollection 2025 Sep.
The detection and identification of chemical warfare agents (CWAs) present challenges in emergency response scenarios and for safety and security applications. This study presents the development and validation of an innovative analytical method using a gas chromatography (GC) and quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for the detection of stimulants for six CWAs. Following the guidelines of the European Network of Forensic Science Institute (ENFSI) and the Commission Implementing Regulation (EU) 2021/808, the analytical method was validated. The validation results demonstrated the robustness and reliability of both the GC and QEPAS modules. Moreover, with regard to the toxicological threshold levels, this study highlights the efficacy of a prototype of a portable device for real security and safety applications. Furthermore, a machine learning (ML) approach was developed to automate the detection and identification of CWAs' stimulants. The workflow involved two interconnected stages: detection based on chromatographic retention times (RTs), and identification using infrared (IR) spectra through the one-class support vector machines classifier. The classifier was activated only after obtaining a positive detection based on RTs. The results highlight the ML model's effectiveness in CWA detection and identification, combining RT analysis and IR spectrum classification, achieving 97% accuracy at a 95.5% confidence interval and 99% accuracy at a 99.7% confidence interval; this result demonstrates the model's utility for real-world security and safety applications for CWAs.
在应急响应场景以及安全保障应用中,化学战剂(CWAs)的检测与识别面临诸多挑战。本研究介绍了一种创新分析方法的开发与验证过程,该方法使用气相色谱(GC)和石英增强光声光谱(QEPAS)传感器来检测六种化学战剂的刺激剂。按照欧洲法医学研究所网络(ENFSI)和委员会实施条例(欧盟)2021/808的指导方针,对该分析方法进行了验证。验证结果证明了气相色谱和石英增强光声光谱模块的稳健性和可靠性。此外,就毒理学阈值水平而言,本研究突出了一款便携式设备原型在实际安全保障应用中的有效性。此外,还开发了一种机器学习(ML)方法,以实现化学战剂刺激剂检测与识别的自动化。该工作流程包括两个相互关联的阶段:基于色谱保留时间(RTs)的检测,以及通过单类支持向量机分类器使用红外(IR)光谱进行识别。只有在基于保留时间获得阳性检测结果后,分类器才会被激活。结果突出了机器学习模型在化学战剂检测与识别中的有效性,该模型结合了保留时间分析和红外光谱分类,在95.5%的置信区间达到了97%的准确率,在99.7%的置信区间达到了99%的准确率;这一结果证明了该模型在化学战剂实际安全保障应用中的实用性。