Suppr超能文献

基于新型3D磁共振成像序列的3D深度卷积神经网络系统用于高级别前列腺癌的计算机辅助诊断

Computer-aided diagnosis based on 3D deep convolutional neural network system using novel 3D magnetic resonance imaging sequences for high-grade prostate cancer.

作者信息

Oka Ryo, Li Bochong, Kato Seiji, Utsumi Takanobu, Endo Takumi, Kamiya Naoto, Nakaguchi Toshiya, Suzuki Hiroyoshi

机构信息

Department of Urology, Toho University Sakura Medical Center, Sakura, Japan.

Department of Medical System Engineering, Graduate School of Engineering, Chiba University Center for Frontier Medical Engineering, Chiba University, Chiba, Japan.

出版信息

Curr Urol. 2025 Sep;19(5):309-313. doi: 10.1097/CU9.0000000000000271. Epub 2025 Feb 3.

Abstract

BACKGROUND

With the rising incidence of prostate cancer (PCa), there is a global demand for assistive tools that aid in the diagnosis of high-grade PCa. This study aimed to develop a diagnostic support system for high-grade PCa using innovative magnetic resonance imaging (MRI) sequences in conjunction with artificial intelligence (AI).

MATERIALS AND METHODS

We examined image sequences of 254 patients with PCa obtained from diffusion-weighted and T2-weighted imaging, using novel MRI sequences before prostatectomy, to elucidate the characteristics of the 3-dimensional (3D) image sequences. The presence of PCa was determined based on the final diagnosis derived from pathological results after prostatectomy. A 3D deep convolutional neural network (3DCNN) was used as the AI for image recognition. Data augmentation was conducted to enhance the image dataset. High-grade PCa was defined as Gleason grade group 4 or higher.

RESULTS

We developed a learning system using a 3DCNN as a diagnostic support system for high-grade PCa. The sensitivity and area under the curve values were 85% and 0.82, respectively.

CONCLUSIONS

The 3DCNN-based AI diagnostic support system, developed in this study using innovative 3D multiparametric MRI sequences, has the potential to assist in identifying patients at a higher risk of pretreatment of high-grade PCa.

摘要

背景

随着前列腺癌(PCa)发病率的上升,全球对有助于诊断高级别PCa的辅助工具存在需求。本研究旨在结合创新的磁共振成像(MRI)序列和人工智能(AI)开发一种用于高级别PCa的诊断支持系统。

材料与方法

我们检查了254例PCa患者在前列腺切除术前使用新型MRI序列从扩散加权成像和T2加权成像获得的图像序列,以阐明三维(3D)图像序列的特征。PCa的存在根据前列腺切除术后病理结果得出的最终诊断来确定。使用三维深度卷积神经网络(3DCNN)作为图像识别的人工智能。进行数据增强以增加图像数据集。高级别PCa定义为Gleason分级组4或更高。

结果

我们开发了一个使用3DCNN作为高级别PCa诊断支持系统的学习系统。灵敏度和曲线下面积值分别为85%和0.82。

结论

本研究使用创新的3D多参数MRI序列开发的基于3DCNN的人工智能诊断支持系统,有可能帮助识别高级别PCa预处理风险较高的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb43/12398383/3f8c026063c3/curr-urol-19-309-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验