Roy Rakesh, Jayasinghe Yahani P, Panda Sasmita, Zeden Merve S, Thomas Vinai C, Ronning Donald R, O'Gara James P
Microbiology, School of Biological and Chemical Sciences, University of Galway, Ireland.
Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.
bioRxiv. 2025 Aug 18:2025.08.17.668425. doi: 10.1101/2025.08.17.668425.
Alanine transport and metabolism impact MRSA pathophysiology by dictating the availability of d-alanine for cell wall synthesis, the target of β-lactam antibiotics. Furthermore -dependent alanine transport controls MRSA β-lactam susceptibility in chemically defined medium (CDM) in a glucose-dependent manner. Here we report that was auxotrophic for l-alanine in CDM, and that this growth defect was rescued by glucose (or compensatory mutations), but only when the alanine racemase () and d-alanine aminotransferase () genes were functional. No role was observed for the alanine dehydrogenase 1 () and genes. As previously reported, and, to a lesser extent, mutations increased susceptibility to d-cycloserine (DCS). In contrast, only mutation increased susceptibility to β-chloro-d-alanine (BCDA), suggesting distinct targets for these alanine analogue antibiotics, which act synergistically against MRSA. Genome sequencing of a BCDA-resistant mutant identified a CT mutation in , predicted to result in a SF substitution. Expression of the operon in wild-type increased BCDA resistance. and double mutants were auxotrophic for d-alanine, indicating that Dat-SF transaminase activity is impaired, a conclusion supported by enzyme assays. Structural modeling revealed an active-site loop shift in Dat-SF that altered PLP co-factor binding. Molecular docking showed that the SF substitution promotes BCDA-PLP adduct dissociation by releasing inactivated BCDA, thereby conferring resistance. These data reveal essential roles for Alr1 and Dat during growth under nutrient-limiting conditions and the potential of combination therapy separately targeting both enzymes with DCS and BCDA to extend the treatment options for MRSA infections.
丙氨酸转运和代谢通过决定用于细胞壁合成的D-丙氨酸的可用性来影响耐甲氧西林金黄色葡萄球菌(MRSA)的病理生理学,而细胞壁合成是β-内酰胺类抗生素的作用靶点。此外,依赖于 的丙氨酸转运以葡萄糖依赖的方式控制MRSA在化学限定培养基(CDM)中的β-内酰胺敏感性。在此我们报告, 在CDM中对L-丙氨酸是营养缺陷型,并且这种生长缺陷可通过葡萄糖(或补偿性突变)挽救,但仅当丙氨酸消旋酶( )和D-丙氨酸转氨酶( )基因功能正常时才可以。未观察到丙氨酸脱氢酶1( )和 基因有此作用。如先前报道, 以及在较小程度上的 突变增加了对D-环丝氨酸(DCS)的敏感性。相比之下,只有 突变增加了对β-氯-D-丙氨酸(BCDA)的敏感性,这表明这些丙氨酸类似物抗生素有不同的作用靶点,它们对MRSA起协同作用。对一株BCDA抗性突变体的基因组测序在 中鉴定出一个CT突变,预测会导致SF替换。野生型中 操纵子的表达增加了BCDA抗性。 和 双突变体对D-丙氨酸是营养缺陷型,表明Dat-SF转氨酶活性受损,酶分析支持了这一结论。结构建模显示Dat-SF中的活性位点环发生移位,改变了磷酸吡哆醛(PLP)辅因子结合。分子对接表明,SF替换通过释放失活的BCDA促进BCDA-PLP加合物解离,从而赋予抗性。这些数据揭示了Alr1和Dat在营养限制条件下生长过程中的重要作用,以及分别用DCS和BCDA靶向这两种酶的联合疗法扩展MRSA感染治疗选择的潜力。