文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A Practical Preprocessing Pipeline for Concurrent TMS-iEEG: Critical Steps and Methodological Considerations.

作者信息

Li Zhuoran, Liu Xianqing, Tatz Joshua, Hassan Umair, Wang Jeffrey B, Keller Corey J, Trapp Nicholas T, Boes Aaron D, Jiang Jing

机构信息

University of Iowa Stead Family Department of Pediatrics, Iowa City, IA, USA.

University of Iowa Department of Psychiatry, Iowa City, IA, USA.

出版信息

bioRxiv. 2025 Aug 18:2025.08.13.670238. doi: 10.1101/2025.08.13.670238.


DOI:10.1101/2025.08.13.670238
PMID:40894703
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12393282/
Abstract

Transcranial magnetic stimulation combined with intracranial EEG (TMS-iEEG) has emerged as a powerful approach for probing the causal organization and dynamics of the human brain. Despite its promise, the presence of TMS-induced artifacts poses significant challenges for accurately characterizing and interpreting evoked neural responses. In this study, we present a practical preprocessing pipeline for single pulse TMS-iEEG data, incorporating key steps of re-referencing, filtering, artifact interpolation, and detrending. Using both real and simulated data, we systematically evaluated the effects of each step and compared alternative methodological choices. Our results demonstrate that this pipeline effectively attenuated various types of artifacts and noise, yielding cleaner signals for the subsequent analysis of intracranial TMS-evoked potentials (iTEPs). Moreover, we showed that methodological choices can substantially influence iTEPs outcomes. In particular, referencing methods might strongly affect iTEP morphology and amplitude, underscoring the importance of tailoring the referencing strategy to specific signal characteristics and research objectives. For filtering, we recommend a segment-based strategy, i.e., applying filters to data segments excluding the artifact window, to minimize distortion from abrupt TMS-related transients. Overall, this work represents an important step toward establishing a general preprocessing framework for TMS-iEEG data. We hope it encourages broader adoption and methodological development in concurrent TMS-iEEG research, ultimately advancing our understanding of brain organization and TMS mechanisms.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/32bbcf50fe6b/nihpp-2025.08.13.670238v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/837028432b6b/nihpp-2025.08.13.670238v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/0a8c78ae4280/nihpp-2025.08.13.670238v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/569bc7ccae8d/nihpp-2025.08.13.670238v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/79ed628bbf96/nihpp-2025.08.13.670238v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/f9a77ee7e0c4/nihpp-2025.08.13.670238v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/32bbcf50fe6b/nihpp-2025.08.13.670238v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/837028432b6b/nihpp-2025.08.13.670238v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/0a8c78ae4280/nihpp-2025.08.13.670238v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/569bc7ccae8d/nihpp-2025.08.13.670238v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/79ed628bbf96/nihpp-2025.08.13.670238v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/f9a77ee7e0c4/nihpp-2025.08.13.670238v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/32bbcf50fe6b/nihpp-2025.08.13.670238v1-f0006.jpg

相似文献

[1]
A Practical Preprocessing Pipeline for Concurrent TMS-iEEG: Critical Steps and Methodological Considerations.

bioRxiv. 2025-8-18

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
An ICA-based artifact suppression method for online extraction of TMS-evoked potentials: toward closed-loop TMS-EEG applications beyond the motor cortex.

J Neural Eng. 2025-9-2

[4]
Gender differences in the context of interventions for improving health literacy in migrants: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2024-12-12

[5]
MEGAP: A Comprehensive Pipeline for Automatic Preprocessing of Large-Scale Magnetoencephalography Data.

Psychophysiology. 2025-7

[6]
Methodological Choices Matter: A Systematic Comparison of TMS-EEG Studies Targeting the Primary Motor Cortex.

Hum Brain Mapp. 2024-10-15

[7]
Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials.

Cochrane Database Syst Rev. 2014-4-29

[8]
Short-Term Memory Impairment

2025-1

[9]
Proper reference selection and re-referencing to mitigate bias in single pulse electrical stimulation data.

J Neurosci Methods. 2025-7

[10]
Factors that influence caregivers' and adolescents' views and practices regarding human papillomavirus (HPV) vaccination for adolescents: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2025-4-15

本文引用的文献

[1]
Dorsolateral prefrontal cortex TMS evokes responses in the subgenual anterior cingulate cortex: Intracranial EEG evidence from two human cases.

Brain Stimul. 2025-6-12

[2]
Assessing expert reliability in determining intracranial EEG channel quality and introducing the automated bad channel detection algorithm.

J Neural Eng. 2024-7-26

[3]
TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites.

Brain Stimul. 2024

[4]
TMS-associated auditory evoked potentials can be effectively masked: Evidence from intracranial EEG.

Brain Stimul. 2024

[5]
CARLA: Adjusted common average referencing for cortico-cortical evoked potential data.

J Neurosci Methods. 2024-7

[6]
Effects of transcranial magnetic stimulation on the human brain recorded with intracranial electrocorticography.

Mol Psychiatry. 2024-5

[7]
Optimal filters for ERP research I: A general approach for selecting filter settings.

Psychophysiology. 2024-6

[8]
Targeting Symptom-Specific Networks With Transcranial Magnetic Stimulation.

Biol Psychiatry. 2024-3-15

[9]
Canonical Response Parameterization: Quantifying the structure of responses to single-pulse intracranial electrical brain stimulation.

PLoS Comput Biol. 2023-5

[10]
Developmental trajectory of transmission speed in the human brain.

Nat Neurosci. 2023-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索