Suppr超能文献

用于同步经颅磁刺激-颅内脑电图的实用预处理流程:关键步骤和方法学考量

A Practical Preprocessing Pipeline for Concurrent TMS-iEEG: Critical Steps and Methodological Considerations.

作者信息

Li Zhuoran, Liu Xianqing, Tatz Joshua, Hassan Umair, Wang Jeffrey B, Keller Corey J, Trapp Nicholas T, Boes Aaron D, Jiang Jing

机构信息

University of Iowa Stead Family Department of Pediatrics, Iowa City, IA, USA.

University of Iowa Department of Psychiatry, Iowa City, IA, USA.

出版信息

bioRxiv. 2025 Aug 18:2025.08.13.670238. doi: 10.1101/2025.08.13.670238.

Abstract

Transcranial magnetic stimulation combined with intracranial EEG (TMS-iEEG) has emerged as a powerful approach for probing the causal organization and dynamics of the human brain. Despite its promise, the presence of TMS-induced artifacts poses significant challenges for accurately characterizing and interpreting evoked neural responses. In this study, we present a practical preprocessing pipeline for single pulse TMS-iEEG data, incorporating key steps of re-referencing, filtering, artifact interpolation, and detrending. Using both real and simulated data, we systematically evaluated the effects of each step and compared alternative methodological choices. Our results demonstrate that this pipeline effectively attenuated various types of artifacts and noise, yielding cleaner signals for the subsequent analysis of intracranial TMS-evoked potentials (iTEPs). Moreover, we showed that methodological choices can substantially influence iTEPs outcomes. In particular, referencing methods might strongly affect iTEP morphology and amplitude, underscoring the importance of tailoring the referencing strategy to specific signal characteristics and research objectives. For filtering, we recommend a segment-based strategy, i.e., applying filters to data segments excluding the artifact window, to minimize distortion from abrupt TMS-related transients. Overall, this work represents an important step toward establishing a general preprocessing framework for TMS-iEEG data. We hope it encourages broader adoption and methodological development in concurrent TMS-iEEG research, ultimately advancing our understanding of brain organization and TMS mechanisms.

摘要

经颅磁刺激联合颅内脑电图(TMS-iEEG)已成为探究人类大脑因果组织和动力学的有力方法。尽管前景广阔,但TMS诱发的伪迹的存在给准确表征和解释诱发的神经反应带来了重大挑战。在本研究中,我们提出了一种针对单脉冲TMS-iEEG数据的实用预处理流程,纳入了重新参考、滤波、伪迹插值和去趋势等关键步骤。使用真实数据和模拟数据,我们系统地评估了每个步骤的效果,并比较了不同的方法选择。我们的结果表明,该流程有效地衰减了各种类型的伪迹和噪声,为后续颅内TMS诱发电位(iTEP)分析产生了更纯净的信号。此外,我们表明方法选择可能会对iTEP结果产生重大影响。特别是,参考方法可能会强烈影响iTEP的形态和幅度,凸显了根据特定信号特征和研究目标定制参考策略的重要性。对于滤波,我们推荐一种基于段的策略,即在不包括伪迹窗口的数据段上应用滤波器,以最小化与TMS相关的突然瞬变引起的失真。总体而言,这项工作是朝着建立TMS-iEEG数据通用预处理框架迈出的重要一步。我们希望它能鼓励在同步TMS-iEEG研究中更广泛地采用和方法开发,最终推进我们对大脑组织和TMS机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e14/12393282/837028432b6b/nihpp-2025.08.13.670238v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验