Zhang Ruoyao, Mitra Gaurav, Ghosh Souradeep, Pappu Rohit V
bioRxiv. 2025 Aug 23:2025.08.20.671282. doi: 10.1101/2025.08.20.671282.
Multivalent biomacromolecules including multi-domain and intrinsically disordered proteins form biomolecular condensates via reversible phase transitions. Condensates are viscoelastic materials that display composition-specific rheological properties and responses to mechanical forces. Graph-based descriptions of microstructures can be combined with computational rheometry to model the outcomes of passive and active mechanical measurements. We consider two types of network models for microstructures. In the Jeffreys model, each edge in the network is a Jeffreys element. In the Stokes-Maxwell model, each edge is a Maxwell element that is embedded in an incompressible viscous fluid that can undergo Stokes flow. We describe results from comparative assessments of the two models for individual elements, ordered lattices, random geometric graphs, structured graphs, and graphs for condensates that are extracted from coarse-grained simulations of disordered proteins. Results from deformation and relaxation tests and flow field analysis reveal how distinct length and time scales contribute to the responses of different types of networks. No single test provides definitive assessments of the connections between material properties and microstructures. Instead, a range of active and passive rheometric tests are essential for distinguishing the responses of different types of networks. Our work establishes computational rheometry as a framework for bridging disparate length and timescales to assess how molecular-scale interactions and dynamics give rise to viscoelastic responses on the mesoscale.
包括多结构域和内在无序蛋白质在内的多价生物大分子通过可逆相变形成生物分子凝聚物。凝聚物是粘弹性材料,具有特定组成的流变特性以及对机械力的响应。基于图形的微观结构描述可以与计算流变学相结合,以模拟被动和主动力学测量的结果。我们考虑两种微观结构的网络模型。在杰弗里斯模型中,网络中的每条边都是一个杰弗里斯元件。在斯托克斯 - 麦克斯韦模型中,每条边都是一个麦克斯韦元件,它嵌入在一种可发生斯托克斯流动的不可压缩粘性流体中。我们描述了对这两种模型在单个元件、有序晶格、随机几何图、结构化图以及从无序蛋白质的粗粒度模拟中提取的凝聚物图方面进行比较评估的结果。变形和松弛测试以及流场分析的结果揭示了不同的长度和时间尺度如何影响不同类型网络的响应。没有单一的测试能够对材料特性和微观结构之间的联系进行确定性评估。相反,一系列主动和被动流变测试对于区分不同类型网络的响应至关重要。我们的工作将计算流变学确立为一个框架,用于弥合不同的长度和时间尺度,以评估分子尺度的相互作用和动力学如何在中尺度上产生粘弹性响应。