Wakhloo Albert J, Clark David G, Abbott L F
Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University.
Center for Computational Neuroscience, Flatiron Institute.
bioRxiv. 2025 Aug 24:2025.08.20.671131. doi: 10.1101/2025.08.20.671131.
In biological neural circuits, the dynamics of neurons and synapses are tightly coupled. We study the consequences of this coupling and show that it enables a novel form of working memory. In recurrent neural network models with ongoing Hebbian plasticity, we find that, following oscillatory stimulation, neurons continue to oscillate long after the input is removed. This creates a dynamic form of memory that has no explicit storage or retrieval phases and that requires no prior knowledge of the input. We trace the mechanism of these "persistent oscillations" to an interaction between neurons and synapses that creates complex outlier eigenvalues of the connectivity matrix. This is shown both in simulation and analytically. We leverage this mechanistic understanding to generate persistent oscillations with prespecified dynamics, creating a dynamic analog of a classical Hopfield network. Our work demonstrates that coupling neuronal and synaptic dynamics enables novel forms of computation.
在生物神经回路中,神经元和突触的动态变化紧密耦合。我们研究了这种耦合的后果,并表明它能够实现一种新型的工作记忆形式。在具有持续赫布可塑性的循环神经网络模型中,我们发现,在振荡刺激之后,即使输入被移除,神经元仍会持续振荡很长时间。这创造了一种动态的记忆形式,它没有明确的存储或检索阶段,并且不需要对输入有先验知识。我们将这些“持续振荡”的机制追溯到神经元和突触之间的相互作用,这种相互作用产生了连接矩阵的复杂异常特征值。这在模拟和分析中都得到了证明。我们利用这种机制理解来生成具有预先指定动态的持续振荡,创建了经典霍普菲尔德网络的动态模拟。我们的工作表明,耦合神经元和突触动态能够实现新型的计算形式。