Suppr超能文献

纤维微结构分位数(FMQ)回归:一种从外周到核心分析白质束的新型统计方法。

Fiber Microstructure Quantile (FMQ) Regression: A Novel Statistical Approach for Analyzing White Matter Bundles from Periphery to Core.

作者信息

Lan Zhou, Chen Yuqian, Rushmore Jarrett, Zekelman Leo, Makris Nikos, Rathi Yogesh, Golby Alexandra J, Zhang Fan, O'Donnell Lauren J

出版信息

bioRxiv. 2025 Apr 16:2024.10.19.619237. doi: 10.1101/2024.10.19.619237.

Abstract

The structural connections of the brain's white matter are critical for brain function. Diffusion MRI tractography enables the in-vivo reconstruction of white matter fiber bundles and the study of their relationship to covariates of interest, such as neurobehavioral or clinical factors. In this work, we introduce Fiber Microstructure Quantile (FMQ) Regression, a new statistical approach for studying the association between white matter fiber bundles and scalar factors (e.g., cognitive scores). Our approach analyzes tissue microstructure measures based on . These regions are defined in a data-driven fashion according to the quantiles of fractional anisotropy (FA) of a which pools all individuals' bundles. The FA quantiles induce a natural subdivision of a fiber bundle, defining regions from the periphery (low FA) to the core (high FA) of the population fiber bundle. To investigate how fiber bundle tissue microstructure relates to covariates of interest, we employ the statistical technique of quantile regression. Unlike ordinary regression, which only models a conditional mean, quantile regression models the conditional quantiles of a response variable. This enables the proposed analysis, where a quantile regression is fitted for each quantile-specific bundle region. To demonstrate FMQ Regression, we perform an illustrative study in a large healthy young adult tractography dataset derived from the Human Connectome Project-Young Adult (HCP-YA), focusing on particular bundles expected to relate to particular aspects of cognition and motor function. In comparison with traditional regression analyses based on FA Mean and Automated Fiber Quantification (AFQ), we find that FMQ Regression provides a superior model fit with the lowest mean squared error. This demonstrates that FMQ Regression captures the relationship between scalar factors and white matter microstructure more effectively than the compared approaches. Our results suggest that FMQ Regression, which enables FA analysis in data-driven regions defined by FA quantiles, is more powerful for detecting brain-behavior associations than AFQ, which enables FA analysis in regions defined along the trajectory of a bundle. FMQ Regression finds significant brain-behavior associations in multiple bundles, including findings unique to males or to females. In both males and females, language performance is significantly associated with FA in the left arcuate fasciculus, with stronger associations in the bundle's periphery. In males only, memory performance is significantly associated with FA in the left uncinate fasciculus, particularly in intermediate regions of the bundle. In females only, motor performance is significantly associated with FA in the left and right corticospinal tracts, with a slightly lower relationship at the bundle periphery and a slightly higher relationship toward the bundle core. No significant relationships are found between executive function and cingulum bundle FA. Our study demonstrates that FMQ Regression is a powerful statistical approach that can provide insight into associations from bundle periphery to bundle core. Our results also identify several brain-behavior relationships unique to males or to females, highlighting the importance of considering sex differences in future research.

摘要

大脑白质的结构连接对脑功能至关重要。扩散磁共振成像纤维束成像能够在体内重建白质纤维束,并研究它们与感兴趣的协变量(如神经行为或临床因素)之间的关系。在这项工作中,我们引入了纤维微结构分位数(FMQ)回归,这是一种用于研究白质纤维束与标量因素(如认知分数)之间关联的新统计方法。我们的方法基于对组织微结构测量值进行分析。这些区域是根据汇集了所有个体纤维束的分数各向异性(FA)的分位数以数据驱动的方式定义的。FA分位数对白质纤维束进行了自然细分,定义了从群体纤维束的外围(低FA)到核心(高FA)的区域。为了研究纤维束组织微结构与感兴趣的协变量之间的关系,我们采用了分位数回归的统计技术。与仅对条件均值进行建模的普通回归不同,分位数回归对响应变量的条件分位数进行建模。这使得我们能够进行所提出的分析,即对每个分位数特定的纤维束区域拟合分位数回归。为了演示FMQ回归,我们在一个来自人类连接组计划 - 青年成人(HCP - YA)的大型健康青年成人纤维束成像数据集中进行了一项说明性研究,重点关注预期与认知和运动功能的特定方面相关的特定纤维束。与基于FA均值和自动纤维定量(AFQ)的传统回归分析相比,我们发现FMQ回归提供了更好的模型拟合,平均平方误差最低。这表明FMQ回归比所比较的方法更有效地捕捉了标量因素与白质微结构之间的关系。我们的结果表明,FMQ回归能够在由FA分位数定义的数据驱动区域中进行FA分析,比AFQ更强大,AFQ只能在沿纤维束轨迹定义的区域中进行FA分析。FMQ回归在多个纤维束中发现了显著的脑 - 行为关联,包括男性或女性特有的发现。在男性和女性中,语言表现都与左侧弓状束中的FA显著相关,在纤维束外围的相关性更强。仅在男性中,记忆表现与左侧钩束中的FA显著相关,特别是在纤维束的中间区域。仅在女性中,运动表现与左侧和右侧皮质脊髓束中的FA显著相关,在纤维束外围的关系略低而在纤维束核心附近的关系略高。执行功能与扣带束FA之间未发现显著关系。我们的研究表明,FMQ回归是一种强大的统计方法,可以深入了解从纤维束外围到纤维束核心的关联。我们的结果还确定了一些男性或女性特有的脑 - 行为关系,突出了在未来研究中考虑性别差异的重要性。

相似文献

本文引用的文献

2
Tractometry of the Human Connectome Project: resources and insights.人类连接组计划的纤维束成像:资源与见解
Front Neurosci. 2024 Jun 12;18:1389680. doi: 10.3389/fnins.2024.1389680. eCollection 2024.
8
Optic radiations representing different eccentricities age differently.代表不同离轴量的视辐射老化速度不同。
Hum Brain Mapp. 2023 Jun 1;44(8):3123-3135. doi: 10.1002/hbm.26267. Epub 2023 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验