Suppr超能文献

基于聚合物的距离惩罚改善了跨作物基因组单细胞数据的染色质相互作用预测。

Polymer-derived distance penalties improve chromatin interaction predictions from single-cell data across crop genomes.

作者信息

Schlegel Luca, Cano Fabio Gómez, Marand Alexandre P, Johannes Frank

机构信息

Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

bioRxiv. 2025 Aug 23:2025.08.20.671329. doi: 10.1101/2025.08.20.671329.

Abstract

Scalable proxies of 3D genome interactions, such as from single-cell co-accessibility or Deep Learning, systematically overestimate long-range chromatin contacts. To correct this bias, we introduce a penalty function grounded in polymer physics, derived by fitting a multi-component power-law model to experimental Hi-C data from maize, rice, and soybean. This correction substantially improves concordance with Hi-C, reduces false-positive rates of long-range interactions by up to 95%, and reveals distinct decay exponents corresponding to different scales of chromatin organization. We provide open-source code and derived parameters to facilitate broad application across plant species.

摘要

三维基因组相互作用的可扩展代理,如来自单细胞共可及性或深度学习的代理,会系统性地高估长程染色质接触。为了纠正这种偏差,我们引入了一个基于聚合物物理学的惩罚函数,该函数是通过将多组分幂律模型拟合到来自玉米、水稻和大豆的实验性Hi-C数据而推导出来的。这种校正显著提高了与Hi-C的一致性,将长程相互作用的假阳性率降低了多达95%,并揭示了与不同染色质组织尺度相对应的不同衰减指数。我们提供开源代码和推导参数,以促进在植物物种中的广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b3a/12393530/2d607119ea00/nihpp-2025.08.20.671329v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验