基于聚合物的距离惩罚改善了跨作物基因组单细胞数据的染色质相互作用预测。

Polymer-derived distance penalties improve chromatin interaction predictions from single-cell data across crop genomes.

作者信息

Schlegel Luca, Cano Fabio Gómez, Marand Alexandre P, Johannes Frank

机构信息

Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

bioRxiv. 2025 Aug 23:2025.08.20.671329. doi: 10.1101/2025.08.20.671329.

Abstract

Scalable proxies of 3D genome interactions, such as from single-cell co-accessibility or Deep Learning, systematically overestimate long-range chromatin contacts. To correct this bias, we introduce a penalty function grounded in polymer physics, derived by fitting a multi-component power-law model to experimental Hi-C data from maize, rice, and soybean. This correction substantially improves concordance with Hi-C, reduces false-positive rates of long-range interactions by up to 95%, and reveals distinct decay exponents corresponding to different scales of chromatin organization. We provide open-source code and derived parameters to facilitate broad application across plant species.

摘要

三维基因组相互作用的可扩展代理,如来自单细胞共可及性或深度学习的代理,会系统性地高估长程染色质接触。为了纠正这种偏差,我们引入了一个基于聚合物物理学的惩罚函数,该函数是通过将多组分幂律模型拟合到来自玉米、水稻和大豆的实验性Hi-C数据而推导出来的。这种校正显著提高了与Hi-C的一致性,将长程相互作用的假阳性率降低了多达95%,并揭示了与不同染色质组织尺度相对应的不同衰减指数。我们提供开源代码和推导参数,以促进在植物物种中的广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b3a/12393530/2d607119ea00/nihpp-2025.08.20.671329v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索