Suppr超能文献

利用可解释人工智能对癌症放射治疗自动治疗计划的新见解。

New Insights into Automatic Treatment Planning for Cancer Radiotherapy Using Explainable Artificial Intelligence.

作者信息

Abrar Md Mainul, Jia Xun, Chi Yujie

机构信息

Department of Physics, The University of Texas at Arlington, Arlington, TX, United States.

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, United States.

出版信息

ArXiv. 2025 Aug 19:arXiv:2508.14229v1.

Abstract

OBJECTIVE

This study aims to uncover the opaque decision-making process of an artificial intelligence (AI) agent for automatic treatment planning.

APPROACH

We examined a previously developed AI agent based on the Actor-Critic with Experience Replay (ACER) network, which automatically tunes treatment planning parameters (TPPs) for inverse planning in prostate cancer intensity modulated radiotherapy. We selected multiple checkpoint ACER agents from different stages of training and applied an explainable AI (EXAI) method to analyze the attribution from dose-volume histogram (DVH) inputs to TPP-tuning decisions. We then assessed each agent's planning efficacy and efficiency, and evaluated their policy space and final TPP tuning space. Combining findings from these approaches, we systematically examined how ACER agents generated high-quality treatment plans in response to different DVH inputs.

MAIN RESULTS

Attribution analysis revealed that ACER agents progressively learned to identify dose-violation regions from DVH inputs and promote appropriate TPP-tuning actions to mitigate them. Organ-wise similarities between DVH attributions and dose-violation reductions ranged from 0.25 to 0.5 across tested agents. While all agents achieved comparably high final planning scores, their planning efficiency and stability differed. Agents with stronger attribution-violation similarity required fewer tuning steps ( 12-13 vs. 22), exhibited a more concentrated TPP-tuning space with lower entropy ( 0.3 vs. 0.6), converged on adjusting only a few key TPPs, and showed smaller discrepancies between practical tuning steps and the theoretical steps needed to move from initial values to the final TPP space. Putting together, these findings indicate that high-performing ACER agents can effectively identify dose violations from DVH inputs and employ a global tuning strategy to achieve high-quality treatment planning.

SIGNIFICANCE

This study demonstrates that the AI agent learns effective TPP-tuning strategies, exhibiting behaviors similar to those of experienced human planners. Improved interpretability of the agent's decision-making process may enhance clinician trust and inspire new strategies for automatic treatment planning.

摘要

目的

本研究旨在揭示人工智能(AI)自动治疗计划代理的不透明决策过程。

方法

我们研究了一个先前基于带经验回放的演员-评论家(ACER)网络开发的AI代理,该代理可自动调整前列腺癌调强放疗逆向计划的治疗计划参数(TPP)。我们从训练的不同阶段选择了多个检查点ACER代理,并应用可解释人工智能(EXAI)方法来分析从剂量体积直方图(DVH)输入到TPP调整决策的归因。然后,我们评估了每个代理的计划有效性和效率,并评估了它们的策略空间和最终TPP调整空间。结合这些方法的结果,我们系统地研究了ACER代理如何根据不同的DVH输入生成高质量的治疗计划。

主要结果

归因分析表明,ACER代理逐渐学会从DVH输入中识别剂量违规区域,并促进适当的TPP调整行动以减轻这些违规。在测试的代理中,DVH归因与剂量违规减少之间的器官特异性相似性范围为0.25至0.5。虽然所有代理都获得了相当高的最终计划分数,但它们的计划效率和稳定性有所不同。具有更强归因-违规相似性的代理需要更少的调整步骤(12 - 13步对22步),表现出更集中的TPP调整空间,熵更低(0.3对0.6),仅在调整少数关键TPP上收敛,并且在实际调整步骤与从初始值移动到最终TPP空间所需的理论步骤之间显示出较小的差异。综合来看,这些发现表明高性能的ACER代理可以有效地从DVH输入中识别剂量违规,并采用全局调整策略来实现高质量的治疗计划。

意义

本研究表明,AI代理学习到有效的TPP调整策略,表现出与经验丰富的人类计划者相似的行为。提高代理决策过程的可解释性可能会增强临床医生的信任,并激发自动治疗计划的新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd47/12393249/bcb2727e23dd/nihpp-2508.14229v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验