Suppr超能文献

基于深度学习的彩色体全息显微镜。

Deep learning-based color holographic microscopy.

机构信息

Electrical and Computer Engineering Department, University of California, Los Angeles, California.

Bioengineering Department, University of California, Los Angeles, California.

出版信息

J Biophotonics. 2019 Nov;12(11):e201900107. doi: 10.1002/jbio.201900107. Epub 2019 Aug 1.

Abstract

We report a framework based on a generative adversarial network that performs high-fidelity color image reconstruction using a single hologram of a sample that is illuminated simultaneously by light at three different wavelengths. The trained network learns to eliminate missing-phase-related artifacts, and generates an accurate color transformation for the reconstructed image. Our framework is experimentally demonstrated using lung and prostate tissue sections that are labeled with different histological stains. This framework is envisaged to be applicable to point-of-care histopathology and presents a significant improvement in the throughput of coherent microscopy systems given that only a single hologram of the specimen is required for accurate color imaging.

摘要

我们提出了一个基于生成对抗网络的框架,该框架使用同时用三种不同波长的光照明的样本的单个全息图来进行高保真彩色图像重建。经过训练的网络学会消除与缺失相位相关的伪影,并为重建图像生成准确的颜色变换。我们的框架使用用不同组织学染色标记的肺和前列腺组织切片进行了实验验证。鉴于仅需样本的单个全息图即可进行准确的彩色成像,因此该框架有望适用于即时护理组织病理学,并显著提高相干显微镜系统的吞吐量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验