文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Progress in the application of graphene-based nanomaterials for gas adsorption and mitigation of air pollution.

作者信息

Adedipe Demilade T, Bayode Ajibola A, Ore Odunayo T

机构信息

State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong Hong Kong China.

Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 232101 Ede Nigeria

出版信息

RSC Adv. 2025 Aug 29;15(38):31032-31059. doi: 10.1039/d5ra04635a.


DOI:10.1039/d5ra04635a
PMID:40896768
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12395428/
Abstract

Graphene-based materials (GBMs) have emerged as versatile and efficient candidates for gas adsorption and air pollution mitigation, particularly targeting CO , NO , SO , and volatile organic compounds (VOCs). This review highlights recent advances in the design and fabrication of GBMs, including green synthesis, heteroatom doping, and metal oxide hybridization. Emphasis is placed on emerging fabrication strategies that enhance porosity, surface chemistry, and gas selectivity. Notably, nitrogen-doped graphene has been shown to improve NO adsorption by up to 45%, while rGO-metal oxide composites demonstrate enhanced CO selectivity under low humidity conditions. We analyse performance data trends and benchmark results from recent studies, outlining the key factors influencing adsorption efficiency. The sustainable development of GBMs using biomass and industrial waste precursors is also explored within the context of the circular economy. Finally, the review underscores the importance of integrating techno-economic analysis (TEA) into future research to support the scalable deployment of GBMs in industrial gas separation technologies.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/07ec10098eac/d5ra04635a-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/e5b6bc466f21/d5ra04635a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/83f4decf7ac3/d5ra04635a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/c05ca693b74c/d5ra04635a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/1af8125882b4/d5ra04635a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/4d725e33a344/d5ra04635a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/80c1c5ac1a1f/d5ra04635a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/d286e11ea25a/d5ra04635a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/ed9b4873e43b/d5ra04635a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/9f272de31f80/d5ra04635a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/6ad079cad701/d5ra04635a-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/155189759238/d5ra04635a-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/8abcf254177a/d5ra04635a-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/7334d2673a18/d5ra04635a-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/c7bc62ab7a93/d5ra04635a-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/07ec10098eac/d5ra04635a-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/e5b6bc466f21/d5ra04635a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/83f4decf7ac3/d5ra04635a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/c05ca693b74c/d5ra04635a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/1af8125882b4/d5ra04635a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/4d725e33a344/d5ra04635a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/80c1c5ac1a1f/d5ra04635a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/d286e11ea25a/d5ra04635a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/ed9b4873e43b/d5ra04635a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/9f272de31f80/d5ra04635a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/6ad079cad701/d5ra04635a-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/155189759238/d5ra04635a-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/8abcf254177a/d5ra04635a-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/7334d2673a18/d5ra04635a-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/c7bc62ab7a93/d5ra04635a-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce7/12395428/07ec10098eac/d5ra04635a-f15.jpg

相似文献

[1]
Progress in the application of graphene-based nanomaterials for gas adsorption and mitigation of air pollution.

RSC Adv. 2025-8-29

[2]
[Recent applications of porous-material-based adsorbents for extracting pesticide residues from environmental and foodstuff samples].

Se Pu. 2025-7

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Wood Waste Valorization and Classification Approaches: A systematic review.

Open Res Eur. 2025-5-6

[5]
Improving Energy Access, Climate and Socio-Economic Outcomes Through Off-Grid Electrification Technologies: A Systematic Review.

Campbell Syst Rev. 2025-8-15

[6]
Reticular Chemistry within Crystalline Porous Gas Adsorbents and Membranes.

Acc Chem Res. 2025-5-15

[7]
Innovative nanomaterials for sustainable environment for reducing the smog effects: a technical review.

Environ Sci Pollut Res Int. 2025-7

[8]
Nanomaterials for Direct Air Capture of CO: Current State of the Art, Challenges and Future Perspectives.

Molecules. 2025-7-21

[9]
Individual-level interventions to reduce personal exposure to outdoor air pollution and their effects on people with long-term respiratory conditions.

Cochrane Database Syst Rev. 2021-8-9

[10]
An Acidic Cohydrolysis Route for the Hydrothermal Synthesis of Metal-Doping Zeolites.

Acc Chem Res. 2025-8-19

本文引用的文献

[1]
Facile preparation of a 3D rGO/g-CN nanocomposite loaded with Ag NPs for photocatalytic degradation.

RSC Adv. 2025-5-21

[2]
Assessing the evolution of oxygenated functional groups on the graphene oxide surface upon mild thermal annealing in water.

RSC Adv. 2023-10-6

[3]
Double trouble: The interaction of PM and O on respiratory hospital admissions.

Environ Pollut. 2023-12-1

[4]
Environmental pollutants and their effects on human health.

Heliyon. 2023-8-25

[5]
Exploring the capture and desorption of CO on graphene oxide foams supported by computational calculations.

Sci Rep. 2023-9-2

[6]
Toxicity analysis of endocrine disrupting pesticides on non-target organisms: A critical analysis on toxicity mechanisms.

Toxicol Appl Pharmacol. 2023-9-1

[7]
Biomass-Tuned Reduced Graphene Oxide@Zn/Cu: Benign Materials for the Cleanup of Selected Nonsteroidal Anti-inflammatory Drugs in Water.

ACS Omega. 2023-2-14

[8]
Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays.

Sci Bull (Beijing). 2019-5-30

[9]
Mechanical and gas adsorption properties of graphene and graphynes under biaxial strain.

Sci Rep. 2022-12-27

[10]
Novel Hydrophobic Polyvinyl-Alcohol Formaldehyde Sponges: Synthesis, Characterization, Fast and Effective Organic Solvent Uptake from Contaminated Soil Samples.

Molecules. 2022-12-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索