Adedipe Demilade T, Bayode Ajibola A, Ore Odunayo T
State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong Hong Kong China.
Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 232101 Ede Nigeria
RSC Adv. 2025 Aug 29;15(38):31032-31059. doi: 10.1039/d5ra04635a.
Graphene-based materials (GBMs) have emerged as versatile and efficient candidates for gas adsorption and air pollution mitigation, particularly targeting CO , NO , SO , and volatile organic compounds (VOCs). This review highlights recent advances in the design and fabrication of GBMs, including green synthesis, heteroatom doping, and metal oxide hybridization. Emphasis is placed on emerging fabrication strategies that enhance porosity, surface chemistry, and gas selectivity. Notably, nitrogen-doped graphene has been shown to improve NO adsorption by up to 45%, while rGO-metal oxide composites demonstrate enhanced CO selectivity under low humidity conditions. We analyse performance data trends and benchmark results from recent studies, outlining the key factors influencing adsorption efficiency. The sustainable development of GBMs using biomass and industrial waste precursors is also explored within the context of the circular economy. Finally, the review underscores the importance of integrating techno-economic analysis (TEA) into future research to support the scalable deployment of GBMs in industrial gas separation technologies.
基于石墨烯的材料(GBMs)已成为气体吸附和缓解空气污染的通用且高效的候选材料,尤其针对一氧化碳、氮氧化物、二氧化硫和挥发性有机化合物(VOCs)。本综述重点介绍了GBMs设计与制备方面的最新进展,包括绿色合成、杂原子掺杂和金属氧化物杂化。重点在于能够提高孔隙率、表面化学性质和气体选择性的新兴制备策略。值得注意的是,氮掺杂石墨烯已被证明可将氮氧化物吸附量提高多达45%,而还原氧化石墨烯-金属氧化物复合材料在低湿度条件下表现出增强的一氧化碳选择性。我们分析了近期研究的性能数据趋势和基准结果,概述了影响吸附效率的关键因素。还在循环经济背景下探讨了使用生物质和工业废料前驱体实现GBMs的可持续发展。最后,本综述强调了将技术经济分析(TEA)纳入未来研究以支持GBMs在工业气体分离技术中规模化应用的重要性。