文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于隐式龙格-库塔法的生物动力系统控制方程稀疏识别

Implicit Runge-Kutta based sparse identification of governing equations in biologically motivated systems.

作者信息

Anvari Mehrdad, Marasi Hamidreza, Kheiri Hossein

机构信息

Department of Applied Mathematics, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, 51666-16471, Iran.

出版信息

Sci Rep. 2025 Sep 2;15(1):32286. doi: 10.1038/s41598-025-10526-9.


DOI:10.1038/s41598-025-10526-9
PMID:40897760
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12405529/
Abstract

Identifying governing equations in physical and biological systems from datasets remains a long-standing challenge across various scientific disciplines. Common methods like sparse identification of nonlinear dynamics (SINDy) often rely on precise derivative approximations, making them sensitive to data scarcity and noise. This study presents a novel data-driven framework by integrating high order implicit Runge-Kutta methods (IRKs) with the sparse identification, termed IRK-SINDy. The framework exhibits remarkable robustness to data scarcity and noise by relying on the A-stability of IRKs and consequently their fewer limitations on stepsize. Two methods for incorporating IRKs into sparse regression are introduced: one employs iterative schemes for numerically solving nonlinear algebraic system of equations, while the other utilizes deep neural networks to predict stage values of IRKs. The performance of IRK-SINDy is demonstrated through numerical experiments on synthetic data in benchmark problems with varied dynamical behaviors, including linear and nonlinear oscillators, the Lorenz system, and biologically relevant models like predator-prey dynamics, logistic growth, and the FitzHugh-Nagumo model. Results indicate that IRK-SINDy outperforms conventional SINDy and the RK4-SINDy framework, particularly under conditions of extreme data scarcity and noise, yielding interpretable and generalizable models.

摘要

从数据集中识别物理和生物系统中的控制方程,在各个科学学科中仍然是一个长期存在的挑战。诸如非线性动力学的稀疏识别(SINDy)等常见方法通常依赖于精确的导数近似,这使得它们对数据稀缺和噪声很敏感。本研究提出了一种新颖的数据驱动框架,通过将高阶隐式龙格 - 库塔方法(IRK)与稀疏识别相结合,称为IRK - SINDy。该框架通过依赖IRK的A稳定性以及因此它们对步长的较少限制,对数据稀缺和噪声表现出显著的鲁棒性。介绍了两种将IRK纳入稀疏回归的方法:一种采用迭代方案数值求解非线性代数方程组,另一种利用深度神经网络预测IRK的阶段值。通过对具有不同动力学行为的基准问题中的合成数据进行数值实验,展示了IRK - SINDy的性能,这些问题包括线性和非线性振荡器、洛伦兹系统以及诸如捕食者 - 猎物动力学、逻辑斯谛增长和菲茨休 - 纳古莫模型等生物学相关模型。结果表明,IRK - SINDy优于传统的SINDy和RK4 - SINDy框架,特别是在极端数据稀缺和噪声条件下,产生可解释且可推广的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/a2e8504ce25f/41598_2025_10526_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/075c15aa03a9/41598_2025_10526_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/39c398ec5859/41598_2025_10526_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/cc9714deb7ff/41598_2025_10526_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/eddc3312db27/41598_2025_10526_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/f2eb963559d7/41598_2025_10526_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/6890e33e3e03/41598_2025_10526_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/192e91d5d9a5/41598_2025_10526_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/18d5b2d7df9b/41598_2025_10526_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/ccbe27e4a0c0/41598_2025_10526_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/a2e8504ce25f/41598_2025_10526_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/075c15aa03a9/41598_2025_10526_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/39c398ec5859/41598_2025_10526_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/cc9714deb7ff/41598_2025_10526_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/eddc3312db27/41598_2025_10526_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/f2eb963559d7/41598_2025_10526_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/6890e33e3e03/41598_2025_10526_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/192e91d5d9a5/41598_2025_10526_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/18d5b2d7df9b/41598_2025_10526_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/ccbe27e4a0c0/41598_2025_10526_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/12405529/a2e8504ce25f/41598_2025_10526_Fig9_HTML.jpg

相似文献

[1]
Implicit Runge-Kutta based sparse identification of governing equations in biologically motivated systems.

Sci Rep. 2025-9-2

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Short-Term Memory Impairment

2025-1

[4]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[5]
Modeling Algal Toxin Dynamics and Integrated Web Framework for Lakes.

Toxins (Basel). 2025-7-3

[6]
A novel adaptive multi-scale wavelet Galerkin method for solving fuzzy hybrid differential equations.

Sci Rep. 2025-7-28

[7]
Scientific Machine Learning of Chaotic Systems Discovers Governing Equations for Neural Populations.

ArXiv. 2025-7-10

[8]
Evidence-based toxicology: a comprehensive framework for causation.

Hum Exp Toxicol. 2005-4

[9]
Sparse-view spectral CT reconstruction via a coupled subspace representation and score-based generative model.

Quant Imaging Med Surg. 2025-6-6

[10]
Elbow Fractures Overview

2025-1

本文引用的文献

[1]
Patient-Specific, Mechanistic Models of Tumor Growth Incorporating Artificial Intelligence and Big Data.

Annu Rev Biomed Eng. 2024-7

[2]
A review of mechanistic learning in mathematical oncology.

Front Immunol. 2024

[3]
From biological data to oscillator models using SINDy.

iScience. 2024-2-23

[4]
Segment anything in medical images.

Nat Commun. 2024-1-22

[5]
WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL SELECTION.

Multiscale Model Simul. 2021

[6]
Discovery of a structural class of antibiotics with explainable deep learning.

Nature. 2024-2

[7]
Modeling bacteria pairwise interactions in human microbiota by Sparse Identification of Nonlinear Dynamics (SINDy).

Annu Int Conf IEEE Eng Med Biol Soc. 2023-7

[8]
Computational methods for analysing multiscale 3D genome organization.

Nat Rev Genet. 2024-2

[9]
A general model-based causal inference method overcomes the curse of synchrony and indirect effect.

Nat Commun. 2023-7-24

[10]
COVRECON: automated integration of genome- and metabolome-scale network reconstruction and data-driven inverse modeling of metabolic interaction networks.

Bioinformatics. 2023-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索