Anvari Mehrdad, Marasi Hamidreza, Kheiri Hossein
Department of Applied Mathematics, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, 51666-16471, Iran.
Sci Rep. 2025 Sep 2;15(1):32286. doi: 10.1038/s41598-025-10526-9.
Identifying governing equations in physical and biological systems from datasets remains a long-standing challenge across various scientific disciplines. Common methods like sparse identification of nonlinear dynamics (SINDy) often rely on precise derivative approximations, making them sensitive to data scarcity and noise. This study presents a novel data-driven framework by integrating high order implicit Runge-Kutta methods (IRKs) with the sparse identification, termed IRK-SINDy. The framework exhibits remarkable robustness to data scarcity and noise by relying on the A-stability of IRKs and consequently their fewer limitations on stepsize. Two methods for incorporating IRKs into sparse regression are introduced: one employs iterative schemes for numerically solving nonlinear algebraic system of equations, while the other utilizes deep neural networks to predict stage values of IRKs. The performance of IRK-SINDy is demonstrated through numerical experiments on synthetic data in benchmark problems with varied dynamical behaviors, including linear and nonlinear oscillators, the Lorenz system, and biologically relevant models like predator-prey dynamics, logistic growth, and the FitzHugh-Nagumo model. Results indicate that IRK-SINDy outperforms conventional SINDy and the RK4-SINDy framework, particularly under conditions of extreme data scarcity and noise, yielding interpretable and generalizable models.
从数据集中识别物理和生物系统中的控制方程,在各个科学学科中仍然是一个长期存在的挑战。诸如非线性动力学的稀疏识别(SINDy)等常见方法通常依赖于精确的导数近似,这使得它们对数据稀缺和噪声很敏感。本研究提出了一种新颖的数据驱动框架,通过将高阶隐式龙格 - 库塔方法(IRK)与稀疏识别相结合,称为IRK - SINDy。该框架通过依赖IRK的A稳定性以及因此它们对步长的较少限制,对数据稀缺和噪声表现出显著的鲁棒性。介绍了两种将IRK纳入稀疏回归的方法:一种采用迭代方案数值求解非线性代数方程组,另一种利用深度神经网络预测IRK的阶段值。通过对具有不同动力学行为的基准问题中的合成数据进行数值实验,展示了IRK - SINDy的性能,这些问题包括线性和非线性振荡器、洛伦兹系统以及诸如捕食者 - 猎物动力学、逻辑斯谛增长和菲茨休 - 纳古莫模型等生物学相关模型。结果表明,IRK - SINDy优于传统的SINDy和RK4 - SINDy框架,特别是在极端数据稀缺和噪声条件下,产生可解释且可推广的模型。
2025-1
Comput Methods Programs Biomed. 2025-6-21
Toxins (Basel). 2025-7-3
Hum Exp Toxicol. 2005-4
Quant Imaging Med Surg. 2025-6-6
2025-1
Annu Rev Biomed Eng. 2024-7
Front Immunol. 2024
iScience. 2024-2-23
Nat Commun. 2024-1-22
Multiscale Model Simul. 2021
Annu Int Conf IEEE Eng Med Biol Soc. 2023-7
Nat Rev Genet. 2024-2