Suppr超能文献

弱稀疏识别(SINDy):基于伽辽金法的数据驱动模型选择

WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL SELECTION.

作者信息

Messenger Daniel A, Bortz David M

机构信息

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526 USA.

出版信息

Multiscale Model Simul. 2021;19(3):1474-1497. doi: 10.1137/20m1343166. Epub 2021 Sep 7.

Abstract

We present a novel weak formulation and discretization for discovering governing equations from noisy measurement data. This method of learning differential equations from data fits into a new class of algorithms that replace pointwise derivative approximations with linear transformations and variance reduction techniques. Compared to the standard SINDy algorithm presented in [S. L. Brunton, J. L. Proctor, and J. N. Kutz, , 113 (2016), pp. 3932-3937], our so-called weak SINDy (WSINDy) algorithm allows for reliable model identification from data with large noise (often with ratios greater than 0.1) and reduces the error in the recovered coefficients to enable accurate prediction. Moreover, the coefficient error scales linearly with the noise level, leading to high-accuracy recovery in the low-noise regime. Altogether, WSINDy combines the simplicity and efficiency of the SINDy algorithm with the natural noise reduction of integration, as demonstrated in [H. Schaeffer and S. G. McCalla, , 96 (2017), 023302], to arrive at a robust and accurate method of sparse recovery.

摘要

我们提出了一种用于从噪声测量数据中发现控制方程的新的弱形式和离散化方法。这种从数据中学习微分方程的方法属于一类新算法,这类算法用线性变换和方差缩减技术取代了逐点导数近似。与文献[S. L. 布伦顿、J. L. 普罗克特和J. N. 库茨,,113 (2016),第3932 - 3937页]中提出的标准SINDy算法相比,我们所谓的弱SINDy(WSINDy)算法能够从具有大噪声(通常噪声比大于0.1)的数据中进行可靠的模型识别,并减少恢复系数中的误差以实现准确预测。此外,系数误差与噪声水平呈线性比例关系,从而在低噪声情况下实现高精度恢复。总体而言,WSINDy将SINDy算法的简单性和效率与积分固有的噪声降低特性相结合,正如文献[H. 舍费尔和S. G. 麦卡拉,,96 (2017),023302]所展示的那样,从而得到一种用于稀疏恢复的稳健且准确的方法。

相似文献

1
WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL SELECTION.
Multiscale Model Simul. 2021;19(3):1474-1497. doi: 10.1137/20m1343166. Epub 2021 Sep 7.
2
WEAK SINDY FOR PARTIAL DIFFERENTIAL EQUATIONS.
J Comput Phys. 2021 Oct 15;443. doi: 10.1016/j.jcp.2021.110525. Epub 2021 Jun 23.
3
Uncovering differential equations from data with hidden variables.
Phys Rev E. 2022 May;105(5-1):054209. doi: 10.1103/PhysRevE.105.054209.
4
Domain-driven models yield better predictions at lower cost than reservoir computers in Lorenz systems.
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200246. doi: 10.1098/rsta.2020.0246. Epub 2021 Feb 15.
5
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control.
Proc Math Phys Eng Sci. 2022 Apr;478(2260):20210904. doi: 10.1098/rspa.2021.0904. Epub 2022 Apr 13.
6
SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics.
Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200279. doi: 10.1098/rspa.2020.0279. Epub 2020 Oct 7.
7
Sparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method.
Sci Rep. 2023 May 16;13(1):7919. doi: 10.1038/s41598-023-34931-0.
8
SINDy-SA framework: enhancing nonlinear system identification with sensitivity analysis.
Nonlinear Dyn. 2022;110(3):2589-2609. doi: 10.1007/s11071-022-07755-2. Epub 2022 Aug 30.
9
Sparsifying priors for Bayesian uncertainty quantification in model discovery.
R Soc Open Sci. 2022 Feb 23;9(2):211823. doi: 10.1098/rsos.211823. eCollection 2022 Feb.
10
Modeling and prediction of the transmission dynamics of COVID-19 based on the SINDy-LM method.
Nonlinear Dyn. 2021;105(3):2775-2794. doi: 10.1007/s11071-021-06707-6. Epub 2021 Jul 22.

引用本文的文献

1
Data-driven analysis of anomalous transport and three-wave-coupling effects in an  plasma.
J Elect Propuls. 2025;4(1):58. doi: 10.1007/s44205-025-00158-6. Epub 2025 Sep 3.
3
Weighted Composition Operators for Learning Nonlinear Dynamics.
IFAC Pap OnLine. 2024;58(17):97-102. doi: 10.1016/j.ifacol.2024.10.120. Epub 2024 Oct 30.
4
Data-driven model discovery and model selection for noisy biological systems.
PLoS Comput Biol. 2025 Jan 21;21(1):e1012762. doi: 10.1371/journal.pcbi.1012762. eCollection 2025 Jan.
5
Weak-form inference for hybrid dynamical systems in ecology.
J R Soc Interface. 2024 Dec;21(221):20240376. doi: 10.1098/rsif.2024.0376. Epub 2024 Dec 18.
6
Physics-informed genetic programming for discovery of partial differential equations from scarce and noisy data.
J Comput Phys. 2024 Oct 1;514. doi: 10.1016/j.jcp.2024.113261. Epub 2024 Jul 8.
7
Coarse-graining Hamiltonian systems using WSINDy.
Sci Rep. 2024 Jun 24;14(1):14457. doi: 10.1038/s41598-024-64730-0.
8
From biological data to oscillator models using SINDy.
iScience. 2024 Feb 23;27(4):109316. doi: 10.1016/j.isci.2024.109316. eCollection 2024 Apr 19.
9
OKRidge: Scalable Optimal k-Sparse Ridge Regression.
Adv Neural Inf Process Syst. 2023 Dec;36:41076-41258.

本文引用的文献

1
WEAK SINDY FOR PARTIAL DIFFERENTIAL EQUATIONS.
J Comput Phys. 2021 Oct 15;443. doi: 10.1016/j.jcp.2021.110525. Epub 2021 Jun 23.
2
Learning partial differential equations for biological transport models from noisy spatio-temporal data.
Proc Math Phys Eng Sci. 2020 Feb;476(2234):20190800. doi: 10.1098/rspa.2019.0800. Epub 2020 Feb 19.
3
Using Experimental Data and Information Criteria to Guide Model Selection for Reaction-Diffusion Problems in Mathematical Biology.
Bull Math Biol. 2019 Jun;81(6):1760-1804. doi: 10.1007/s11538-019-00589-x. Epub 2019 Feb 27.
4
Robust data-driven discovery of governing physical laws with error bars.
Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180305. doi: 10.1098/rspa.2018.0305. Epub 2018 Sep 19.
5
Sparse model selection via integral terms.
Phys Rev E. 2017 Aug;96(2-1):023302. doi: 10.1103/PhysRevE.96.023302. Epub 2017 Aug 2.
6
Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3932-7. doi: 10.1073/pnas.1517384113. Epub 2016 Mar 28.
7
Predicting catastrophes in nonlinear dynamical systems by compressive sensing.
Phys Rev Lett. 2011 Apr 15;106(15):154101. doi: 10.1103/PhysRevLett.106.154101.
8
Parameter estimation and model selection in computational biology.
PLoS Comput Biol. 2010 Mar 5;6(3):e1000696. doi: 10.1371/journal.pcbi.1000696.
9
Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems.
J R Soc Interface. 2009 Feb 6;6(31):187-202. doi: 10.1098/rsif.2008.0172.
10
Model selection and mixed-effects modeling of HIV infection dynamics.
Bull Math Biol. 2006 Nov;68(8):2005-25. doi: 10.1007/s11538-006-9084-x. Epub 2006 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验