Shao Lizhi, Liang Chao, Yan Ye, Zhu Haibin, Jiang Xiaoming, Bao Meiling, Zang Pan, Huang Xiazi, Zhou Hongyu, Nie Pei, Wang Liang, Li Jie, Zhang Shudong, Ren Shancheng
School of Internet, Anhui University, Hefei, China.
CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China.
Nat Cancer. 2025 Sep 2. doi: 10.1038/s43018-025-01041-x.
Prostate cancer is a leading health concern for men, yet current clinical assessments of tumor aggressiveness rely on invasive procedures that often lead to inconsistencies. There remains a critical need for accurate, noninvasive diagnosis and grading methods. Here we developed a foundation model trained on multiparametric magnetic resonance imaging (MRI) and paired pathology data for noninvasive diagnosis and grading of prostate cancer. Our model, MRI-based Predicted Transformer for Prostate Cancer (MRI-PTPCa), was trained under contrastive learning on nearly 1.3 million image-pathology pairs from over 5,500 patients in discovery, modeling, external and prospective cohorts. During real-world testing, prediction of MRI-PTPCa demonstrated consistency with pathology and superior performance (area under the curve above 0.978; grading accuracy 89.1%) compared with clinical measures and other prediction models. This work introduces a scalable, noninvasive approach to prostate cancer diagnosis and grading, offering a robust tool to support clinical decision-making while reducing reliance on biopsies.
前列腺癌是男性主要的健康问题,但目前对肿瘤侵袭性的临床评估依赖于侵入性程序,这些程序往往导致不一致性。对准确的非侵入性诊断和分级方法仍有迫切需求。在此,我们开发了一种基础模型,该模型基于多参数磁共振成像(MRI)和配对病理数据进行训练,用于前列腺癌的非侵入性诊断和分级。我们的模型,即基于MRI的前列腺癌预测变压器(MRI-PTPCa),在对比学习下,对来自发现、建模、外部和前瞻性队列中5500多名患者的近130万对图像-病理数据进行了训练。在实际测试中,与临床测量和其他预测模型相比,MRI-PTPCa的预测显示出与病理的一致性和卓越性能(曲线下面积超过0.978;分级准确率89.1%)。这项工作引入了一种可扩展的、非侵入性的前列腺癌诊断和分级方法,提供了一个强大的工具来支持临床决策,同时减少对活检的依赖。