Lee Jaimie J, Jettinghoff William, Arbour Gregory, Zepeda Andres, Isaac Kathryn V, Ng Raymond T, Nichol Alan M
Department of Radiation Oncology, BC Cancer, Vancouver, BC, Canada.
Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
Breast Cancer Res Treat. 2025 Sep 2. doi: 10.1007/s10549-025-07801-8.
Cancer registries rarely track breast cancer relapse due to the resource-intensive nature of manual chart review. To address this gap, we developed natural language processing (NLP) models to automate the identification of breast cancer relapse in pathology reports.
We collected pathology reports from patients diagnosed with breast cancer between January 1, 2005, and December 31, 2014, in British Columbia, Canada, and manually annotated each for the presence or absence of local, regional, distant, and any breast cancer relapses. With these reports, we fine-tuned large language models to classify pathology reports.
The corpus contained 1,888 pathology reports from a cohort of 993 breast cancer patients. Of these reports, 673 (35.6%) described local, 296 (15.7%) regional, and 654 (34.6%) distant relapses. In addition, 1,510 (80.0%) described at least one of any relapse type. The median time from diagnosis to first relapse was 7.3 years (range 0.2-18.2). All models demonstrated excellent performance. The local-relapse model performed particularly well, with > 93% accuracy, sensitivity, specificity, and 0.98 area under the receiver operating characteristic curve (AUC) score.
We developed NLP models to detect breast cancer relapses from pathology reports with excellent accuracy, sensitivity, specificity, and AUC. NLP may facilitate more efficient and accurate collection of breast cancer outcomes data from clinical reports.
由于人工查阅病历资源消耗大,癌症登记处很少追踪乳腺癌复发情况。为填补这一空白,我们开发了自然语言处理(NLP)模型,以自动识别病理报告中的乳腺癌复发情况。
我们收集了2005年1月1日至2014年12月31日期间在加拿大不列颠哥伦比亚省被诊断为乳腺癌的患者的病理报告,并人工标注每份报告中是否存在局部、区域、远处及任何乳腺癌复发情况。利用这些报告,我们对大语言模型进行微调以对病理报告进行分类。
语料库包含来自993名乳腺癌患者队列的1888份病理报告。在这些报告中,673份(35.6%)描述了局部复发,296份(15.7%)描述了区域复发,654份(34.6%)描述了远处复发。此外,1510份(80.0%)描述了至少一种复发类型。从诊断到首次复发的中位时间为7.3年(范围0.2 - 18.2年)。所有模型均表现出优异的性能。局部复发模型表现尤为出色,准确率、灵敏度、特异性均超过93%,受试者操作特征曲线(AUC)评分达0.98。
我们开发了NLP模型,能以优异的准确率、灵敏度、特异性和AUC从病理报告中检测乳腺癌复发情况。NLP可能有助于从临床报告中更高效、准确地收集乳腺癌结局数据。