Suppr超能文献

肌萎缩侧索硬化症患者泪液衍生蛋白生物标志物特征的鉴定与验证

Identification and validation of a tear fluid-derived protein biomarker signature in patients with amyotrophic lateral sclerosis.

作者信息

Scholl Lena-Sophie, Demleitner Antonia F, Riedel Jenny, Adachi Seren, Neuenroth Lisa, Meijs Clara, Tzeplaeff Laura, Caldi Gomes Lucas, Galhoz Ana, Cordts Isabell, Lenz Christof, Menden Michael, Lingor Paul

机构信息

Department of Neurology, TUM University Hospital Munich, Munich, Germany.

Computational Health Center, Helmholtz Munich, Neuherberg, Germany.

出版信息

Acta Neuropathol Commun. 2025 Sep 2;13(1):187. doi: 10.1186/s40478-025-02109-6.

Abstract

The diagnosis of Amyotrophic Lateral Sclerosis (ALS) remains challenging, particularly in early stages, where characteristic symptoms may be subtle and nonspecific. The development of disease-specific and clinically validated biomarkers is crucial to optimize diagnosis. Here, we explored tear fluid (TF) as a promising ALS biomarker source, given its accessibility, anatomical proximity to the brainstem as an important site of neurodegeneration, and proven discriminative power in other neurodegenerative diseases. Using a discovery approach, we profiled protein abundance in TF of ALS patients (n = 49) and controls (n = 54) via data-independent acquisition mass spectrometry. Biostatistical analysis and machine learning identified differential protein abundance and pathways in ALS, leading to a protein signature. These proteins were validated by Western blot in an independent cohort (ALS n = 51; controls n = 52), and their discriminatory performance was assessed in-silico employing machine learning. 876 proteins were consistently detected in TF, with 106 differentially abundant in ALS. A six-protein signature, including CRYM, PFKL, CAPZA2, ALDH16A1, SERPINC1, and HP, exhibited discriminatory potential. We replicated significant differences of SERPINC1 and HP levels between ALS and controls across the cohorts, and their combination yielded the best in-silico performance. Overall, this investigation of TF proteomics in ALS and controls revealed dysregulated proteins and pathways, highlighting inflammation as a key disease feature, strengthening the potential of TF as a source for biomarker discovery.

摘要

肌萎缩侧索硬化症(ALS)的诊断仍然具有挑战性,尤其是在疾病早期,其特征性症状可能很细微且不具有特异性。开发疾病特异性且经过临床验证的生物标志物对于优化诊断至关重要。鉴于泪液(TF)易于获取、与作为神经退行性变重要部位的脑干在解剖位置上接近,且在其他神经退行性疾病中已被证明具有鉴别能力,我们在此探索将泪液作为一种有前景的ALS生物标志物来源。我们采用探索性方法,通过数据非依赖采集质谱分析对ALS患者(n = 49)和对照组(n = 54)的泪液蛋白质丰度进行了分析。生物统计学分析和机器学习确定了ALS中差异蛋白质丰度和相关通路,从而得出一个蛋白质特征。这些蛋白质在一个独立队列(ALS患者n = 51;对照组n = 52)中通过蛋白质印迹法进行了验证,并利用机器学习在计算机模拟中评估了它们的鉴别性能。在泪液中始终检测到876种蛋白质,其中106种在ALS中丰度存在差异。一个由CRY M、PFKL、CAPZA2、ALDH16A1、SERPINC1和HP组成的六蛋白特征显示出鉴别潜力。我们在各个队列中重复验证了ALS患者和对照组之间SERPINC1和HP水平的显著差异,它们的组合在计算机模拟中表现最佳。总体而言,这项对ALS患者和对照组泪液蛋白质组学的研究揭示了蛋白质和通路的失调,突出了炎症作为关键疾病特征,增强了泪液作为生物标志物发现来源的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a872/12403336/10d0d1114f91/40478_2025_2109_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验