Suppr超能文献

纳米孔与人工智能助力的微生物活力推断

Nanopore- and AI-empowered microbial viability inference.

作者信息

Ürel Harika, Benassou Sabrina, Marti Hanna, Reska Tim, Sauerborn Ela, Pinheiro Alves De Souza Yuri, Perlas Albert, Rayo Enrique, Biggel Michael, Kesselheim Stefan, Borel Nicole, Martin Edward J, Venegas Constanza B, Schloter Michael, Schröder Kathrin, Mittelstrass Jana, Prospero Simone, Ferguson James M, Urban Lara

机构信息

Helmholtz AI, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany.

Computational Health Center, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany.

出版信息

Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf100.

Abstract

BACKGROUND

The ability to differentiate between viable and dead microorganisms in metagenomic data is crucial for various microbial inferences, ranging from assessing ecosystem functions of environmental microbiomes to inferring the virulence of potential pathogens from metagenomic analysis. Established viability-resolved genomic approaches are labor-intensive as well as biased and lacking in sensitivity.

RESULTS

We here introduce a new fully computational framework that leverages nanopore sequencing technology to assess microbial viability directly from freely available nanopore signal data. Our approach utilizes deep neural networks to learn features from such raw nanopore signal data that can distinguish DNA from viable and dead microorganisms in a controlled experimental setting of UV-induced Escherichia cell death. The application of explainable artificial intelligence (AI) tools then allows us to pinpoint the signal patterns in the nanopore raw data that allow the model to make viability predictions at high accuracy. Using the model predictions as well as explainable AI, we show that our framework can be leveraged in a real-world application to estimate the viability of obligate intracellular Chlamydia, where traditional culture-based methods suffer from inherently high false-negative rates. This application shows that our viability model captures predictive patterns in the nanopore signal that can be utilized to predict viability across taxonomic boundaries. We finally show the limits of our model's generalizability through antibiotic exposure of a simple mock microbial community, where a new model specific to the killing method had to be trained to obtain accurate viability predictions.

CONCLUSIONS

While the potential of our computational framework's generalizability and applicability to metagenomic studies needs to be assessed in more detail, we here demonstrate for the first time the analysis of freely available nanopore signal data to infer the viability of microorganisms, with many potential applications in environmental, veterinary, and clinical settings.

摘要

背景

在宏基因组数据中区分活微生物和死微生物的能力对于各种微生物推断至关重要,从评估环境微生物群落的生态系统功能到通过宏基因组分析推断潜在病原体的毒力。既定的区分活力的基因组方法既耗费人力,又存在偏差且缺乏敏感性。

结果

我们在此引入了一个全新的完全计算框架,该框架利用纳米孔测序技术直接从免费可得的纳米孔信号数据中评估微生物活力。我们的方法利用深度神经网络从此类原始纳米孔信号数据中学习特征,这些特征能够在紫外线诱导大肠杆菌细胞死亡的可控实验环境中区分活微生物和死微生物的DNA。随后应用可解释人工智能(AI)工具使我们能够精准定位纳米孔原始数据中的信号模式,从而使模型能够高精度地进行活力预测。利用模型预测以及可解释人工智能,我们表明我们的框架可应用于实际场景,以估计专性细胞内寄生的衣原体的活力,而传统的基于培养的方法存在固有的高假阴性率。此应用表明我们的活力模型捕捉到了纳米孔信号中的预测模式,可用于跨分类边界预测活力。我们最终通过对一个简单的模拟微生物群落进行抗生素暴露,展示了我们模型的通用性极限,在这种情况下,必须训练一个特定于杀伤方法的新模型才能获得准确的活力预测。

结论

虽然我们的计算框架的通用性和对宏基因组研究的适用性潜力需要更详细地评估,但我们在此首次证明了通过分析免费可得的纳米孔信号数据来推断微生物的活力,在环境、兽医和临床环境中有许多潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ca/12405693/ab680df1c60a/giaf100fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验