Mayer Oliver, Wirsching Hanna, Thamm Janis, Welzel Julia, Schuh Sandra
Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg Medizincampus Süd, Sauerbruchstr. 6, 86179, Augsburg, Deutschland.
Dermatologie (Heidelb). 2025 Sep 3. doi: 10.1007/s00105-025-05569-y.
The diagnosis of actinic keratosis (AK), basal cell carcinoma (BCC), and psoriasis may present a challenge in everyday dermatological practice. Clinical and dermoscopic assessments often reach their limits, especially in ambiguous or anatomically difficult-to-access lesions. Biopsies are often impractical, and objective tools for treatment monitoring are lacking.
To investigate the potential of line-field confocal optical coherence tomography (LC-OCT) combined with artificial intelligence (AI) for noninvasive diagnosis, differentiation, and longitudinal monitoring.
Analysis and evaluation of LC-OCT imaging data from various studies. Application of AI-based algorithms for the detection of vascular patterns, epidermal changes, and BCC identification using heatmap-supported decision tools.
The LC-OCT enables high-resolution, real-time visualization of dermoepidermal structures as well as vascular architecture. In combination with AI, objective parameters such as PRO score, atypia, and vascular morphology can be quantified and monitored over time. AI-assisted diagnostics significantly improve diagnostic accuracy-especially in BCC and among less experienced users. However, implementation requires clear guidelines, standardization, and well-defined legal and ethical frameworks.
The LC-OCT combined with AI is a promising tool for more precise, standardized, and personalized dermatological diagnostics. Particularly in AK, BCC, and psoriasis, it has the potential to enhance care, reduce the need for invasive procedures, and provide novel insights into tumor and inflammation biology.
光化性角化病(AK)、基底细胞癌(BCC)和银屑病的诊断在日常皮肤科实践中可能具有挑战性。临床和皮肤镜评估常常达到其极限,尤其是在病变不明确或解剖位置难以触及的情况下。活检通常不切实际,且缺乏用于治疗监测的客观工具。
研究线阵共聚焦光学相干断层扫描(LC-OCT)结合人工智能(AI)用于非侵入性诊断、鉴别和纵向监测的潜力。
分析和评估来自各项研究的LC-OCT成像数据。应用基于AI的算法,使用热图支持的决策工具检测血管模式、表皮变化和BCC识别。
LC-OCT能够对真皮表皮结构以及血管结构进行高分辨率实时可视化。与AI相结合,可以对诸如PRO评分、异型性和血管形态等客观参数进行量化并随时间进行监测。AI辅助诊断显著提高了诊断准确性,尤其是在BCC诊断中以及经验较少的使用者中。然而,实施需要明确的指南、标准化以及明确界定的法律和伦理框架。
LC-OCT结合AI是一种有前景的工具,可用于更精确、标准化和个性化的皮肤科诊断。特别是在AK、BCC和银屑病方面,它有潜力改善护理、减少侵入性操作的需求,并为肿瘤和炎症生物学提供新的见解。