DAMAE Medical, Paris, France.
Melanoma Unit, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain.
Sci Rep. 2022 Jan 10;12(1):481. doi: 10.1038/s41598-021-04395-1.
Diagnosis based on histopathology for skin cancer detection is today's gold standard and relies on the presence or absence of biomarkers and cellular atypia. However it suffers drawbacks: it requires a strong expertise and is time-consuming. Moreover the notion of atypia or dysplasia of the visible cells used for diagnosis is very subjective, with poor inter-rater agreement reported in the literature. Lastly, histology requires a biopsy which is an invasive procedure and only captures a small sample of the lesion, which is insufficient in the context of large fields of cancerization. Here we demonstrate that the notion of cellular atypia can be objectively defined and quantified with a non-invasive in-vivo approach in three dimensions (3D). A Deep Learning (DL) algorithm is trained to segment keratinocyte (KC) nuclei from Line-field Confocal Optical Coherence Tomography (LC-OCT) 3D images. Based on these segmentations, a series of quantitative, reproducible and biologically relevant metrics is derived to describe KC nuclei individually. We show that, using those metrics, simple and more complex definitions of atypia can be derived to discriminate between healthy and pathological skins, achieving Area Under the ROC Curve (AUC) scores superior than 0.965, largely outperforming medical experts on the same task with an AUC of 0.766. All together, our approach and findings open the door to a precise quantitative monitoring of skin lesions and treatments, offering a promising non-invasive tool for clinical studies to demonstrate the effects of a treatment and for clinicians to assess the severity of a lesion and follow the evolution of pre-cancerous lesions over time.
基于组织病理学的皮肤癌检测是目前的金标准,依赖于生物标志物和细胞异型性的存在与否。然而,它存在一些缺陷:它需要很强的专业知识并且耗时。此外,用于诊断的可见细胞异型性或发育不良的概念非常主观,文献中报道的观察者间一致性很差。最后,组织学需要活检,这是一种侵入性程序,只能捕获病变的一小部分样本,在大面积癌变的情况下是不够的。在这里,我们证明可以使用非侵入性的体内方法在三维(3D)中客观地定义和量化细胞异型性的概念。训练一个深度学习(DL)算法来从线场共聚焦光学相干断层扫描(LC-OCT)3D 图像中分割角质形成细胞(KC)核。基于这些分割,我们得出了一系列定量的、可重复的和生物学相关的指标,用于单独描述 KC 核。我们表明,使用这些指标,可以从健康和病理皮肤中区分出简单和更复杂的异型性定义,获得优于 0.965 的ROC 曲线下面积(AUC)评分,远远优于医学专家在同一任务上 0.766 的 AUC 评分。总的来说,我们的方法和发现为皮肤病变和治疗的精确定量监测开辟了道路,为临床研究提供了一种有前途的非侵入性工具,以证明治疗效果,为临床医生评估病变的严重程度并随时间推移跟踪癌前病变的演变。