Suppr超能文献

DgeaHeatmap:一个用于转录组分析和热图生成的R包。

DgeaHeatmap: an R package for transcriptomic analysis and heatmap generation.

作者信息

Lancelle Leonie J, Potru Phani S, Spittau Björn, Wiemann Susanne

机构信息

Department of Anatomy and Cell Biology, Medical School OWL, Bielefeld University, Bielefeld 33615, Germany.

出版信息

Bioinform Adv. 2025 Aug 20;5(1):vbaf194. doi: 10.1093/bioadv/vbaf194. eCollection 2025.

Abstract

MOTIVATION

The growing use of transcriptomic data from platforms like Nanostring GeoMx DSP demands accessible and flexible tools for differential gene expression analysis and heatmap generation. Current web-based tools often lack transparency, modifiability, and independence from external servers creating barriers for researchers seeking customizable workflows, as well as data privacy and security. Additionally, tools that can be utilized by individuals with minimal bioinformatics expertise provide an inclusive solution, empowering a broader range of users to analyze complex data effectively.

RESULTS

Here, we introduce Differential Gene Expression Analysis and Heatmaps (DgeaHeatmap), an R package offering streamlined and user-friendly functions for transcriptomic data analysis particularly yielded by Nanostring GeoMx DSP instruments. The package supports both normalized and raw count data, providing tools to preprocess, filter, and annotate datasets. DgeaHeatmap leverages Z-score scaling and k-means clustering for customizable heatmap generation and incorporates a workflow adapted from GeoMxTools for handling raw Nanostring GeoMx DSP data. By enabling server-independent analyses, the package enhances flexibility, transparency, and reproducibility in transcriptomic research.

AVAILABILITY AND IMPLEMENTATION

The package DgeaHeatmap is freely available on GitLab (https://gitlab.ub.uni-bielefeld.de/spittaulab/Dgea_Heatmap_Package.git).

摘要

动机

越来越多地使用来自Nanostring GeoMx DSP等平台的转录组数据,需要可访问且灵活的工具来进行差异基因表达分析和生成热图。当前基于网络的工具往往缺乏透明度、可修改性,且依赖外部服务器,这给寻求可定制工作流程的研究人员以及数据隐私和安全带来了障碍。此外,生物信息学专业知识要求较低的个人也能使用的工具提供了一个包容性的解决方案,使更广泛的用户能够有效地分析复杂数据。

结果

在此,我们介绍差异基因表达分析和热图(DgeaHeatmap),这是一个R包,为转录组数据分析提供了简化且用户友好的功能,特别是由Nanostring GeoMx DSP仪器产生的数据。该包支持标准化数据和原始计数数据,提供了预处理、过滤和注释数据集的工具。DgeaHeatmap利用Z分数缩放和k均值聚类来生成可定制的热图,并纳入了一个改编自GeoMxTools的工作流程来处理原始的Nanostring GeoMx DSP数据。通过实现独立于服务器的分析,该包提高了转录组研究的灵活性、透明度和可重复性。

可用性和实现方式

DgeaHeatmap包可在GitLab上免费获取(https://gitlab.ub.uni-bielefeld.de/spittaulab/Dgea_Heatmap_Package.git)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/810a/12401572/394f5c5d7795/vbaf194f1.jpg

相似文献

1
DgeaHeatmap: an R package for transcriptomic analysis and heatmap generation.
Bioinform Adv. 2025 Aug 20;5(1):vbaf194. doi: 10.1093/bioadv/vbaf194. eCollection 2025.
5
GRAPEVNE - Graphical Analytical Pipeline Development Environment for Infectious Diseases.
Wellcome Open Res. 2025 May 27;10:279. doi: 10.12688/wellcomeopenres.23824.1. eCollection 2025.
6
Encouraging reusability of computational research through Data-to-Knowledge Packages - A hydrological use case.
Open Res Eur. 2025 Jul 4;5:123. doi: 10.12688/openreseurope.20221.2. eCollection 2025.
8
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.
Alzheimers Dement. 2021 Apr;17(4):704-715. doi: 10.1002/alz.12215. Epub 2021 Jan 21.
9
Improving the usability of open health service delivery simulation models using Python and web apps.
NIHR Open Res. 2023 Dec 15;3:48. doi: 10.3310/nihropenres.13467.1. eCollection 2023.
10
Capturing the influx of living systematic reviews: a systematic methodological survey.
J Clin Epidemiol. 2025 Jul 23;186:111904. doi: 10.1016/j.jclinepi.2025.111904.

本文引用的文献

2
standR: spatial transcriptomic analysis for GeoMx DSP data.
Nucleic Acids Res. 2024 Jan 11;52(1):e2. doi: 10.1093/nar/gkad1026.
3
Silencing of TGFβ signalling in microglia results in impaired homeostasis.
Nat Commun. 2018 Oct 1;9(1):4011. doi: 10.1038/s41467-018-06224-y.
4
limma powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015 Apr 20;43(7):e47. doi: 10.1093/nar/gkv007. Epub 2015 Jan 20.
5
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
6
voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.
Genome Biol. 2014 Feb 3;15(2):R29. doi: 10.1186/gb-2014-15-2-r29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验