Suppr超能文献

standR:GeoMx DSP 数据的空间转录组学分析。

standR: spatial transcriptomic analysis for GeoMx DSP data.

机构信息

Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia.

Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia.

出版信息

Nucleic Acids Res. 2024 Jan 11;52(1):e2. doi: 10.1093/nar/gkad1026.

Abstract

To gain a better understanding of the complexity of gene expression in normal and diseased tissues it is important to account for the spatial context and identity of cells in situ. State-of-the-art spatial profiling technologies, such as the Nanostring GeoMx Digital Spatial Profiler (DSP), now allow quantitative spatially resolved measurement of the transcriptome in tissues. However, the bioinformatics pipelines currently used to analyse GeoMx data often fail to successfully account for the technical variability within the data and the complexity of experimental designs, thus limiting the accuracy and reliability of the subsequent analysis. Carefully designed quality control workflows, that include in-depth experiment-specific investigations into technical variation and appropriate adjustment for such variation can address this issue. Here, we present standR, an R/Bioconductor package that enables an end-to-end analysis of GeoMx DSP data. With four case studies from previously published experiments, we demonstrate how the standR workflow can enhance the statistical power of GeoMx DSP data analysis and how the application of standR enables scientists to develop in-depth insights into the biology of interest.

摘要

为了更好地理解正常和患病组织中基因表达的复杂性,了解细胞在原位的空间背景和特征非常重要。目前最先进的空间分析技术,如 Nanostring GeoMx Digital Spatial Profiler(DSP),现在可以定量地对组织中的转录组进行空间分辨率测量。然而,目前用于分析 GeoMx 数据的生物信息学管道通常未能成功地解释数据中的技术可变性和实验设计的复杂性,从而限制了后续分析的准确性和可靠性。精心设计的质量控制工作流程,包括对技术变异进行深入的实验特异性研究,并对此类变异进行适当的调整,可以解决这个问题。在这里,我们介绍了 standR,这是一个 R/Bioconductor 包,可实现对 GeoMx DSP 数据的端到端分析。通过四个来自先前发表的实验的案例研究,我们展示了 standR 工作流程如何增强 GeoMx DSP 数据分析的统计功效,以及 standR 的应用如何使科学家能够深入了解感兴趣的生物学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ee/10783521/937b23163cc9/gkad1026figgra1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验