Suppr超能文献

在生物信息学教育中使用人工智能的机遇与考量。

Opportunities and considerations for using artificial intelligence in bioinformatics education.

作者信息

Piccolo Stephen R, Nathan Aparna, Brazas Michelle D, Kandpal Manoj, Miró-Herrans Aida T, Kleinschmit Adam J, McClatchy Susan, Mutheiwana Pertunia, Nikolic Dusanka, Gallo Luciana I, Julius Rolanda Sunaye, Lloret-Llinares Marta, Mulder Nicola, Presgraves Danielle, Shewaramani Sonal, Xool-Tamayo Jorge, Chain Frédéric J J, Sanchez Guerrero Silvia Arantza

机构信息

Department of Biology, Brigham Young University, Provo, UT, 84602, United States.

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, United States.

出版信息

Bioinform Adv. 2025 Sep 1;5(1):vbaf169. doi: 10.1093/bioadv/vbaf169. eCollection 2025.

Abstract

Artificial intelligence (AI) tools and techniques are undoubtedly being used in bioinformatics education, reflecting broader trends in education. However, many instructors and learners may be unaware of the full scope of potential uses for these tools within bioinformatics education, as well as effective practices for using them. Building on discussions held at the 6th Global Bioinformatics Education Summit, this perspective article provides insights about ways that AI might be used to generate or adapt instructional content, provide personalized help for learners, and automate assessment and grading. Additionally, we highlight AI skills that are important for bioinformatics learners to develop in order to effectively use AI as a bioinformatics learning tool. We highlight currently available tools in the quickly evolving AI landscape and suggest ways that instructors or learners might use such tools. Furthermore, we discuss key considerations and challenges associated with integrating AI into bioinformatics education, including ethical implications, potential biases, and the need to critically evaluate AI-generated content. Finally, we highlight the need for further research to better understand how AI tools are being used in practice and empower their effective and responsible use in bioinformatics education.

摘要

人工智能(AI)工具和技术无疑正在生物信息学教育中得到应用,这反映了教育领域的更广泛趋势。然而,许多教师和学习者可能并未意识到这些工具在生物信息学教育中的全部潜在用途,以及使用它们的有效方法。基于在第六届全球生物信息学教育峰会上进行的讨论,这篇观点文章提供了有关人工智能可用于生成或改编教学内容、为学习者提供个性化帮助以及自动化评估和评分的方式的见解。此外,我们强调了生物信息学学习者为了有效地将人工智能用作生物信息学学习工具而需要培养的重要人工智能技能。我们突出了快速发展的人工智能领域中当前可用的工具,并建议教师或学习者使用此类工具的方式。此外,我们讨论了将人工智能整合到生物信息学教育中相关的关键考虑因素和挑战,包括伦理影响、潜在偏差以及批判性评估人工智能生成内容的必要性。最后,我们强调需要进一步开展研究,以更好地了解人工智能工具在实际中的使用情况,并促进其在生物信息学教育中的有效和负责任使用。

相似文献

1
Opportunities and considerations for using artificial intelligence in bioinformatics education.
Bioinform Adv. 2025 Sep 1;5(1):vbaf169. doi: 10.1093/bioadv/vbaf169. eCollection 2025.
3
Enhancing education for children with ASD: a review of evaluation and measurement in AI tool implementation.
Disabil Rehabil Assist Technol. 2025 Mar 13:1-18. doi: 10.1080/17483107.2025.2477678.
4
Healthcare workers' informal uses of mobile phones and other mobile devices to support their work: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2024 Aug 27;8(8):CD015705. doi: 10.1002/14651858.CD015705.pub2.
5
Stench of Errors or the Shine of Potential: The Challenge of (Ir)Responsible Use of ChatGPT in Speech-Language Pathology.
Int J Lang Commun Disord. 2025 Jul-Aug;60(4):e70088. doi: 10.1111/1460-6984.70088.
6
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843.
8
Interventions to improve safe and effective medicines use by consumers: an overview of systematic reviews.
Cochrane Database Syst Rev. 2014 Apr 29;2014(4):CD007768. doi: 10.1002/14651858.CD007768.pub3.
9
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.
Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun.
10
A Comprehensive and Modality Diverse Cervical Spine and Back Musculoskeletal Physical Exam Curriculum for Medical Students.
J Educ Teach Emerg Med. 2025 Jul 31;10(3):SG1-SG8. doi: 10.21980/J8RQ0N. eCollection 2025 Jul.

本文引用的文献

1
How human-AI feedback loops alter human perceptual, emotional and social judgements.
Nat Hum Behav. 2025 Feb;9(2):345-359. doi: 10.1038/s41562-024-02077-2. Epub 2024 Dec 18.
2
Bioinformatics and biomedical informatics with ChatGPT: Year one review.
Quant Biol. 2024 Dec;12(4):345-359. doi: 10.1002/qub2.67. Epub 2024 Jun 27.
3
On the Responsible Use of Chatbots in Bioinformatics.
Genomics Proteomics Bioinformatics. 2024 May 9;22(1). doi: 10.1093/gpbjnl/qzae002.
4
Generative AI's environmental costs are soaring - and mostly secret.
Nature. 2024 Feb;626(8000):693. doi: 10.1038/d41586-024-00478-x.
5
An international consensus on effective, inclusive, and career-spanning short-format training in the life sciences and beyond.
PLoS One. 2023 Nov 9;18(11):e0293879. doi: 10.1371/journal.pone.0293879. eCollection 2023.
6
Evaluating a large language model's ability to solve programming exercises from an introductory bioinformatics course.
PLoS Comput Biol. 2023 Sep 28;19(9):e1011511. doi: 10.1371/journal.pcbi.1011511. eCollection 2023 Sep.
7
Empowering beginners in bioinformatics with ChatGPT.
Quant Biol. 2023 Jun;11(2):105-108. doi: 10.15302/j-qb-023-0327. Epub 2023 Mar 31.
8
Impact of artificial intelligence on human loss in decision making, laziness and safety in education.
Humanit Soc Sci Commun. 2023;10(1):311. doi: 10.1057/s41599-023-01787-8. Epub 2023 Jun 9.
9
Green Algorithms: Quantifying the Carbon Footprint of Computation.
Adv Sci (Weinh). 2021 May 2;8(12):2100707. doi: 10.1002/advs.202100707. eCollection 2021 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验