Chaudhari Amit, Logsdail Andrew J, Folli Andrea
Cardiff Catalysis Institute, School of Chemistry, Translational Research Hub, Cardiff University, Maindy Road, Cardiff CF24 4HF, U.K.
Net Zero Innovation Institute, Cardiff Catalysis Institute, School of Chemistry, Translational Research Hub, Cardiff University, Maindy Road, Cardiff CF24 4HF, U.K.
J Phys Chem C Nanomater Interfaces. 2025 Aug 19;129(34):15453-15461. doi: 10.1021/acs.jpcc.5c04364. eCollection 2025 Aug 28.
Controlling the formation of electron polarons in TiO doped with transition metals is important for the design of transparent conducting oxides for high-efficiency photovoltaics and photocatalysts with tunable reaction selectivities. In this work, EPR spectroscopy is combined with Hubbard-corrected density functional theory (DFT+), with refined atomic-like Hubbard projectors, to show the sensitivity of charge compensation in substitutionally doped Nb-TiO and W-TiO with respect to the TiO polymorph (, anatase or rutile). Both EPR magnetic tensors and DFT+predicted Nb 4 and W 5 orbital occupancies show the formation of differing dopant charge states depending on the TiO polymorph, with nonmagnetic Nb and W in doped anatase and paramagnetic Nb and W in doped rutile. The results provide an example of how a coherent experimental and theory-validated framework can be used to understand and predict the reducibility of dopants and electron trapping energetics in TiO polymorphs. The outcome enables greater control over the electronic and magnetic properties of metal oxide semiconductors, which are crucial for the rational design of next-generation materials for energy conversion and catalytic applications.
控制过渡金属掺杂的TiO中电子极化子的形成对于设计用于高效光伏的透明导电氧化物和具有可调反应选择性的光催化剂至关重要。在这项工作中,电子顺磁共振光谱(EPR)与采用精细类原子哈伯德投影算符的哈伯德校正密度泛函理论(DFT +)相结合,以展示替代掺杂的Nb-TiO和W-TiO中电荷补偿相对于TiO多晶型物(锐钛矿或金红石)的敏感性。EPR磁张量和DFT +预测的Nb 4+和W 5+轨道占有率均表明,取决于TiO多晶型物,会形成不同的掺杂剂电荷状态,掺杂锐钛矿中的Nb和W为非磁性,而掺杂金红石中的Nb和W为顺磁性。结果提供了一个示例,说明如何使用连贯的实验和理论验证框架来理解和预测TiO多晶型物中掺杂剂的还原性和电子俘获能量学。这一结果能够更好地控制金属氧化物半导体的电子和磁性特性,这对于合理设计用于能量转换和催化应用的下一代材料至关重要。