Suppr超能文献

基于多参数磁共振成像的机器学习影像组学预后模型用于超出米兰标准的多灶性肝细胞癌:一项回顾性研究

Multiparametric MRI-Based Machine Learning Radiomics Prognostic Models for Multifocal Hepatocellular Carcinoma Beyond Milan Criteria: A Retrospective Study.

作者信息

Liang Xinyue, Wu Fei, Zheng Xinde, Xiao Yuyao, Yang Chun, Zeng Mengsu

机构信息

Shanghai Institute of Medical Imaging, Shanghai, People's Republic of China.

Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.

出版信息

J Hepatocell Carcinoma. 2025 Aug 28;12:1957-1972. doi: 10.2147/JHC.S528391. eCollection 2025.

Abstract

PURPOSE

To develop machine learning radiomics models for preoperative risk stratification of multifocal hepatocellular carcinoma (MHCC) beyond Milan criteria.

METHODS

Patients with pathologically proven MHCC beyond Milan criteria between January 2015 and January 2019 were retrospectively included. Radiomic features were extracted from tumor, peritumor, and tumor-peritumor regions using multiparametric MRI (mpMRI). An unsupervised spectral clustering algorithm was used to identify radiomics-based patient subtypes. Radiomics risk scores (RRS) for overall survival (OS) and recurrence-free survival (RFS) were generated using supervised extreme gradient boosting (XGBoost)-LASSO Cox proportional hazard regression analysis. The Concordance index (C-Index) was used to evaluate the model performance in the training and validation sets.

RESULTS

A total of 156 patients were divided into training (n = 78) and validation (n = 78) groups. Two distinct unsupervised subtypes were identified using spectral clustering, and subtype B was associated with worse OS and poor RFS. Incorporating radiomics predictors into the conventional preoperative clinical-radiological features improved the OS prediction performance (training set: from 0.616 to 0.712; validation set: from 0.522 to 0.710), and RFS prediction (training set: from 0.653 to 0.735; validation set: from 0.574 to 0.698). The combined models showed good predictive performance for 5-year OS (AUC, 0.77) and RFS (AUC, 0.81) in the training set and for 5-year OS (AUC, 0.75) and RFS (AUC, 0.76) in the validation set.

CONCLUSION

Two preoperative models combining mpMRI-based clinico-radiological and radiomics predictors effectively predicted outcomes for patients with MHCC beyond the Milan criteria.

摘要

目的

建立用于多灶性肝细胞癌(MHCC)术前风险分层的机器学习影像组学模型,该模型适用于超出米兰标准的患者。

方法

回顾性纳入2015年1月至2019年1月间经病理证实为超出米兰标准的MHCC患者。使用多参数MRI(mpMRI)从肿瘤、瘤周和肿瘤-瘤周区域提取影像组学特征。采用无监督谱聚类算法识别基于影像组学的患者亚型。使用有监督的极端梯度提升(XGBoost)-套索Cox比例风险回归分析生成总生存期(OS)和无复发生存期(RFS)的影像组学风险评分(RRS)。一致性指数(C指数)用于评估模型在训练集和验证集中的性能。

结果

共156例患者分为训练组(n = 78)和验证组(n = 78)。使用谱聚类识别出两种不同的无监督亚型,B亚型与较差的OS和RFS相关。将影像组学预测因子纳入传统术前临床-放射学特征可改善OS预测性能(训练集:从0.616提高到0.712;验证集:从0.522提高到0.710)和RFS预测性能(训练集:从0.653提高到0.735;验证集:从0.574提高到0.698)。联合模型在训练集中对5年OS(AUC,0.77)和RFS(AUC,0.81)以及在验证集中对5年OS(AUC,0.75)和RFS(AUC,0.76)均显示出良好的预测性能。

结论

两个结合基于mpMRI的临床-放射学和影像组学预测因子的术前模型有效地预测了超出米兰标准的MHCC患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a76/12401053/efa678d39a35/JHC-12-1957-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验