Suppr超能文献

从基线磁共振成像(MRI)中提取的影像组学特征对巴塞罗那临床肝癌(BCLC)分期系统预测肝细胞癌患者无移植生存的附加价值:一项单中心回顾性分析

The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis.

作者信息

Mirza-Aghazadeh-Attari Mohammad, Ambale Venkatesh Bharath, Aliyari Ghasabeh Mounes, Mohseni Alireza, Madani Seyedeh Panid, Borhani Ali, Shahbazian Haneyeh, Ansari Golnoosh, Kamel Ihab R

机构信息

Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Diagnostics (Basel). 2023 Feb 2;13(3):552. doi: 10.3390/diagnostics13030552.

Abstract

BACKGROUND

To study the additive value of radiomics features to the BCLC staging system in clustering HCC patients.

METHODS

A total of 266 patients with HCC were included in this retrospective study. All patients had undergone baseline MR imaging, and 95 radiomics features were extracted from 3D segmentations representative of lesions on the venous phase and apparent diffusion coefficient maps. A random forest algorithm was utilized to extract the most relevant features to transplant-free survival. The selected features were used alongside BCLC staging to construct Kaplan-Meier curves.

RESULTS

Out of 95 extracted features, the three most relevant features were incorporated into random forest classifiers. The Integrated Brier score of the prediction error curve was 0.135, 0.072, and 0.048 for the BCLC, radiomics, and combined models, respectively. The mean area under the receiver operating curve (ROC curve) over time for the three models was 81.1%, 77.3%, and 56.2% for the combined radiomics and BCLC models, respectively.

CONCLUSIONS

Radiomics features outperformed the BCLC staging system in determining prognosis in HCC patients. The addition of a radiomics classifier increased the classification capability of the BCLC model. Texture analysis features could be considered as possible biomarkers in predicting transplant-free survival in HCC patients.

摘要

背景

研究影像组学特征对巴塞罗那临床肝癌(BCLC)分期系统在肝细胞癌(HCC)患者聚类中的附加值。

方法

本回顾性研究共纳入266例HCC患者。所有患者均接受了基线磁共振成像检查,并从静脉期和表观扩散系数图上代表病变的三维分割中提取了95个影像组学特征。采用随机森林算法提取与无移植生存期最相关的特征。所选特征与BCLC分期一起用于构建Kaplan-Meier曲线。

结果

在提取的95个特征中,三个最相关的特征被纳入随机森林分类器。BCLC、影像组学和联合模型的预测误差曲线的综合Brier评分分别为0.135、0.072和0.048。三种模型随时间的受试者操作特征曲线(ROC曲线)下的平均面积,联合影像组学和BCLC模型分别为81.1%、77.3%和56.2%。

结论

影像组学特征在确定HCC患者预后方面优于BCLC分期系统。添加影像组学分类器提高了BCLC模型的分类能力。纹理分析特征可被视为预测HCC患者无移植生存期的潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c805/9914401/8a770a9133b6/diagnostics-13-00552-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验