Suppr超能文献

超越平均绝对相对差异(MARD):重新思考用于现实世界糖尿病护理的连续血糖监测(CGM)评估

Beyond Mean Absolute Relative Difference (MARD): Rethinking Continuous Glucose Monitoring (CGM) Evaluation for Real-World Diabetes Care.

作者信息

Acanfora Matteo, Pedone Erika, Presciuttini Barbara, Ré Francesca, Acanfora Luca

机构信息

Institute of Endocrine and Metabolic Sciences, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, ITA.

Endocrinology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, ITA.

出版信息

Cureus. 2025 Sep 1;17(9):e91427. doi: 10.7759/cureus.91427. eCollection 2025 Sep.

Abstract

Continuous glucose monitoring (CGM) has transformed diabetes mellitus management, evolving from a supportive monitoring tool to a central pillar of care. For people with type 1 diabetes and many insulin-treated individuals with type 2 diabetes, CGM now directly informs treatment decisions, especially when integrated with automated insulin delivery (AID) systems. In these hybrid closed-loop systems, sensor data drives real-time insulin adjustments, meaning that accuracy is not just a matter of measurement quality; it is a matter of patient safety. However, the primary accuracy measure currently used, the mean absolute relative difference (MARD), is increasingly inadequate for guiding clinical decisions. MARD offers a single averaged number under controlled conditions, but it does not capture the timing, direction, or clinical consequences of sensor errors. This is particularly problematic in AID systems, where even minor inaccuracies may lead to inappropriate insulin dosing, increasing the risk of hypoglycemia or hyperglycemia. Given the centrality of CGM in modern diabetes care, a more comprehensive evaluation approach is urgently needed, one that reflects real-world performance, prioritizes patient safety, and addresses the diverse contexts in which CGM devices are used. This editorial presents an opinion-based perspective, proposing a four-dimensional framework for CGM evaluation beyond the traditional reliance on MARD.

摘要

持续葡萄糖监测(CGM)已经改变了糖尿病管理模式,从一种辅助监测工具发展成为护理的核心支柱。对于1型糖尿病患者以及许多接受胰岛素治疗的2型糖尿病患者而言,CGM如今直接为治疗决策提供依据,尤其是在与自动胰岛素输注(AID)系统相结合时。在这些混合闭环系统中,传感器数据驱动实时胰岛素调整,这意味着准确性不仅关乎测量质量,更关乎患者安全。然而,目前使用的主要准确性指标——平均绝对相对差(MARD),在指导临床决策方面越来越显得不足。MARD在受控条件下提供一个单一的平均值,但它无法捕捉传感器误差的时间、方向或临床后果。这在AID系统中尤其成问题,因为即使是微小的不准确也可能导致胰岛素剂量不当,增加低血糖或高血糖的风险。鉴于CGM在现代糖尿病护理中的核心地位,迫切需要一种更全面的评估方法,一种能够反映实际性能、优先考虑患者安全并解决CGM设备使用的各种情况的方法。本社论提出了一种基于观点的视角,建议建立一个超越传统依赖MARD的CGM评估四维框架。

相似文献

6
Continuous glucose monitoring systems for type 1 diabetes mellitus.1型糖尿病的连续血糖监测系统
Cochrane Database Syst Rev. 2012 Jan 18;1(1):CD008101. doi: 10.1002/14651858.CD008101.pub2.

本文引用的文献

1
7. Diabetes Technology: Standards of Care in Diabetes-2025.7. 糖尿病技术:2025年糖尿病照护标准
Diabetes Care. 2025 Jan 1;48(Supplement_1):S146-S166. doi: 10.2337/dc25-S007.
9
The surveillance error grid.监测误差网格。
J Diabetes Sci Technol. 2014 Jul;8(4):658-72. doi: 10.1177/1932296814539589. Epub 2014 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验