Umair Muhammad, Ahmad Jawad, Alasbali Nada, Saidani Oumaima, Hanif Muhammad, Khattak Aizaz Ahmad, Khan Muhammad Shahbaz
Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia.
Cybersecurity Center, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia.
Front Comput Neurosci. 2025 Apr 16;19:1569828. doi: 10.3389/fncom.2025.1569828. eCollection 2025.
Major Depressive Disorder (MDD) remains a critical mental health concern, necessitating accurate detection. Traditional approaches to diagnosing MDD often rely on manual Electroencephalography (EEG) analysis to identify potential disorders. However, the inherent complexity of EEG signals along with the human error in interpreting these readings requires the need for more reliable, automated methods of detection.
This study utilizes EEG signals to classify MDD and healthy individuals through a combination of machine learning, deep learning, and split learning approaches. State of the art machine learning models i.e., Random Forest, Support Vector Machine, and Gradient Boosting are utilized, while deep learning models such as Transformers and Autoencoders are selected for their robust feature-extraction capabilities. Traditional methods for training machine learning and deep learning models raises data privacy concerns and require significant computational resources. To address these issues, the study applies a split learning framework. In this framework, an ensemble learning technique has been utilized that combines the best performing machine and deep learning models.
Results demonstrate a commendable classification performance with certain ensemble methods, and a Transformer-Random Forest combination achieved 99% accuracy. In addition, to address data-sharing constraints, a split learning framework is implemented across three clients, yielding high accuracy (over 95%) while preserving privacy. The best client recorded 96.23% accuracy, underscoring the robustness of combining Transformers with Random Forest under resource-constrained conditions.
These findings demonstrate that distributed deep learning pipelines can deliver precise MDD detection from EEG data without compromising data security. Proposed framework keeps data on local nodes and only exchanges intermediate representations. This approach meets institutional privacy requirements while providing robust classification outcomes.
重度抑郁症(MDD)仍然是一个关键的心理健康问题,需要进行准确检测。传统的MDD诊断方法通常依赖于人工脑电图(EEG)分析来识别潜在疾病。然而,EEG信号固有的复杂性以及解读这些读数时的人为误差,使得需要更可靠的自动检测方法。
本研究通过机器学习、深度学习和分割学习方法的组合,利用EEG信号对MDD患者和健康个体进行分类。使用了随机森林、支持向量机和梯度提升等先进的机器学习模型,同时选择了Transformer和自动编码器等深度学习模型,因其具有强大的特征提取能力。传统的机器学习和深度学习模型训练方法存在数据隐私问题,并且需要大量计算资源。为了解决这些问题,该研究应用了分割学习框架。在此框架中,采用了一种集成学习技术,将表现最佳的机器学习和深度学习模型结合起来。
结果表明,某些集成方法具有值得称赞的分类性能,Transformer - 随机森林组合的准确率达到了99%。此外,为了解决数据共享限制,在三个客户端上实现了分割学习框架,在保护隐私的同时产生了高精度(超过95%)。最佳客户端的准确率为96.23%,突出了在资源受限条件下将Transformer与随机森林相结合的稳健性。
这些发现表明,分布式深度学习管道可以从EEG数据中精确检测MDD,而不会损害数据安全性。所提出的框架将数据保存在本地节点上,只交换中间表示。这种方法满足了机构隐私要求,同时提供了稳健的分类结果。