Lai Duy Van, Nguyen Son Hung, Nguyen Anh Hoang, Nguyen Toan Van, Dinh Linh Chi, Doan Phuong Dinh, Pham Trang Thi, Phung Van Hong Thi, Tonezzer Matteo, La Duong Duc, Nguyen Tung Thanh, Tran Trung Bao
Institute of Materials Science, Vietnam Academy of Science and Technology No. 18 Hoang Quoc Viet Str., Nghia Do Ward Hanoi Vietnam
FPTUniversit Campuses Ha Noi Education Zone, Hoa Lac Hi-tech Park, Km29, Thang Long Boulevard, Thach Hoa, Thach That Ha Noi Vietnam.
RSC Adv. 2025 Sep 1;15(38):31240-31254. doi: 10.1039/d5ra04356e. eCollection 2025 Aug 29.
This work investigates the impact of Mg/Ni atomic ratios (75 : 25 and 66.7 : 33.3) on the formation of MgNi phases and their hydrogen storage performance. Mg-Ni alloys were synthesized by vacuum casting at 1073 K followed by high-energy ball milling and were evaluated through both experimental methods and density functional theory (DFT) simulations. DFT calculations revealed that hydrogen absorption in MgNi is thermodynamically more favorable than in pure Mg, with enthalpy values consistent with experimental results. Hydrogenation tests at 588 K under 20 MPa demonstrated superior performance for the Mg-25Ni alloy, which achieved a higher storage capacity (3.76 wt%) and faster kinetics than Mg-33Ni (3.53 wt%). The improved performance is attributed to the enhanced formation of MgH and the synergistic interaction between Mg and MgNi. Kinetic analysis using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model indicated a lower activation energy for Mg-25Ni (56.74 kJ mol), confirming faster desorption kinetics. Pressure-composition-temperature (PCT) isotherms and van't Hoff analysis further supported the favorable thermodynamics of Mg-25Ni. Notably, this alloy exhibited excellent cyclic stability with minimal capacity loss over 10 cycles. These findings establish Mg-25Ni as a promising candidate for high-efficiency, reversible hydrogen storage, bridging fundamental insights with practical material design.
本工作研究了Mg/Ni原子比(75∶25和66.7∶33.3)对MgNi相形成及其储氢性能的影响。通过在1073 K下真空铸造,随后进行高能球磨合成了Mg-Ni合金,并通过实验方法和密度泛函理论(DFT)模拟对其进行了评估。DFT计算表明,MgNi中吸氢在热力学上比纯Mg更有利,其焓值与实验结果一致。在588 K、20 MPa下的氢化试验表明,Mg-25Ni合金具有优异的性能,其储氢容量(3.76 wt%)高于Mg-33Ni(3.53 wt%),动力学更快。性能的改善归因于MgH形成的增强以及Mg与MgNi之间的协同相互作用。使用约翰逊-梅尔-阿夫拉米-科尔莫戈罗夫(JMAK)模型进行的动力学分析表明,Mg-25Ni的活化能较低(56.74 kJ/mol),证实了解吸动力学更快。压力-组成-温度(PCT)等温线和范特霍夫分析进一步支持了Mg-25Ni有利的热力学性质。值得注意的是,该合金在10次循环中表现出优异的循环稳定性,容量损失最小。这些发现确立了Mg-25Ni作为高效、可逆储氢的有前途的候选材料,将基础见解与实际材料设计联系起来。