Suppr超能文献

LSWOA:一种用于数值和工程设计优化问题的结合莱维飞行与螺旋飞行的增强型鲸鱼优化算法。

LSWOA: An enhanced whale optimization algorithm with Levy flight and Spiral flight for numerical and engineering design optimization problems.

作者信息

Wei Junhao, Gu Yanzhao, Xie Zhanxi, Yan Yuzheng, Lu Baili, Li Zikun, Cheong Ngai, Zhang Jiafeng, Zhang Song

机构信息

Faculty of Applied Sciences, Macao Polytechnic University, Macao, China.

Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China.

出版信息

PLoS One. 2025 Sep 3;20(9):e0322058. doi: 10.1371/journal.pone.0322058. eCollection 2025.

Abstract

Whale Optimization Algorithm (WOA) suffers from issues such as premature convergence, low population diversity in the later stages of iteration, slow convergence rate, low convergence accuracy, and an imbalance between exploration and exploitation. Thus, an enhanced Whale Optimization Algorithm (LSWOA) based on multiple strategies is proposed, aiming to overcome the limitations of the canonical WOA. The performance of the canonical WOA is improved through innovative strategies: first, an initialization process using Good Nodes Set is introduced to ensure that the search starts from a higher-quality baseline; second, a distance-based guided search strategy is employed to adjust the search direction and intensity by calculating the distance to the optimal solution, which enhances the algorithm's ability to escape local optima; and lastly, LSWOA introduces an enhanced spiral updating strategy, while the enhanced spiral-enveloping prey strategy effectively balances exploration and exploitation by dynamically adjusting the spiral shape parameters to adapt to different stages of the search, thereby more accurately updating the positions of individuals and improving convergence speed. In the experimental section, we validate the efficiency and superiority of LSWOA by comparing it with outstanding metaheuristic algorithms and excellent WOA variants. The experimental results show that LSWOA exhibits significant optimization performance on the benchmark functions with various dimensions. Additionally, LSWOA is tested on seven engineering design optimization problems, and the results demonstrate that it performs excellently in these application scenarios, effectively solving complex optimization problems in different dimensions and showing its potential for a wide range of applications in real-world engineering challenges.

摘要

鲸鱼优化算法(WOA)存在诸如早熟收敛、迭代后期种群多样性低、收敛速度慢、收敛精度低以及探索与利用不平衡等问题。因此,提出了一种基于多种策略的改进鲸鱼优化算法(LSWOA),旨在克服传统WOA的局限性。通过创新策略提高了传统WOA的性能:首先,引入了一种使用优质节点集的初始化过程,以确保搜索从更高质量的基线开始;其次,采用基于距离的引导搜索策略,通过计算到最优解的距离来调整搜索方向和强度,增强了算法逃离局部最优的能力;最后,LSWOA引入了一种改进的螺旋更新策略,而改进的螺旋包围猎物策略通过动态调整螺旋形状参数以适应搜索的不同阶段,有效地平衡了探索与利用,从而更准确地更新个体位置并提高收敛速度。在实验部分,我们通过将LSWOA与优秀的元启发式算法和出色的WOA变体进行比较,验证了LSWOA的效率和优越性。实验结果表明,LSWOA在各种维度的基准函数上表现出显著的优化性能。此外,对LSWOA在七个工程设计优化问题上进行了测试,结果表明它在这些应用场景中表现出色,有效地解决了不同维度的复杂优化问题,并显示出其在实际工程挑战中广泛应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b9b/12407429/6ba2462031ca/pone.0322058.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验