Suppr超能文献

基于混合特征的机器视觉方法用于织物起球和起毛起球的客观评价。

Hybrid feature-based machine vision method for objective evaluation of textile pilling and fuzzing.

作者信息

Jiao Qingchun, Qian Zifan, Dong Yue, He Bo

机构信息

School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou, China.

Zhejiang Institute of Quality Science, Hangzhou, China.

出版信息

PLoS One. 2025 Sep 3;20(9):e0329814. doi: 10.1371/journal.pone.0329814. eCollection 2025.

Abstract

The degree of pilling and fuzzing in textile fabrics is a crucial indicator of textile product quality. Current evaluation methods predominantly rely on subjective judgments, leading to issues such as rating errors and inefficiency. To achieve objective assessment of pilling and fuzzing grades, this study proposes a Hybrid Feature-Based Machine Vision Method for Objective Evaluation of Textile Pilling and Fuzzing. The method incorporates a Hybrid Feature-based Depthwise Separable Attention Network for Objective Evaluation of Textile Pilling and Fuzzing (HDAN-PF), which effectively extracts and fuses frequency and Space domain features. A Channel Attention mechanism enhances the model's ability to capture subtle features, while Depthwise Separable Convolutions reduce computational complexity, improving evaluation speed while maintaining high accuracy.The model size is approximately 327.37 MB with a total parameter count of 135,115,512. Experimental results demonstrate that the proposed method achieves a classification accuracy of 96.26% on diverse fabric images, showcasing robust generalization and practical utility.By leveraging this machine vision approach, the proposed method offers a transformative solution for achieving objective, consistent, and efficient assessments of pilling and fuzzing grades, advancing textile quality evaluation practices.

摘要

纺织面料的起球和起毛程度是纺织品质量的关键指标。当前的评估方法主要依赖主观判断,导致评级误差和效率低下等问题。为了实现对起球和起毛等级的客观评估,本研究提出了一种基于混合特征的机器视觉方法用于纺织品起球和起毛的客观评估。该方法采用了一种基于混合特征的深度可分离注意力网络用于纺织品起球和起毛的客观评估(HDAN-PF),它能有效地提取和融合频率和空间域特征。通道注意力机制增强了模型捕捉细微特征的能力,而深度可分离卷积降低了计算复杂度,在保持高精度的同时提高了评估速度。该模型大小约为327.37MB,总参数数量为135,115,512。实验结果表明,该方法在不同织物图像上的分类准确率达到了96.26%,展现出强大的泛化能力和实际应用价值。通过利用这种机器视觉方法,该方法为实现对起球和起毛等级的客观、一致和高效评估提供了一种变革性的解决方案,推动了纺织品质量评估实践的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c22/12407393/ea54f6f97ba2/pone.0329814.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验