Suppr超能文献

基于套索算法的机器学习算法用于预测接受颈椎前路椎间盘切除融合术患者的吞咽困难

LASSO-based machine learning algorithm for prediction of dysphagia in patients suffering anterior cervical discectomy and fusion.

作者信息

Wang Bingyu, Shi Jiawei, Chen Zefu, Liu Jingmin, Zhu Yongjian, Zhang Zhongmin, Zheng Xin, Wang Xiaobo

机构信息

Nanfang Hospital, Guangzhou, China.

The Affiliated TCM Hospital of Guangzhou Medical University, Guangdong Guangzhou, China.

出版信息

Eur Spine J. 2025 Sep 4. doi: 10.1007/s00586-025-09320-y.

Abstract

PURPOSE

To develop and validate a predictive model for postoperative dysphagia in patients undergoing anterior cervical discectomy and fusion (ACDF).

METHODS

We retrospectively analyzed 500 patients who underwent ACDF at our institution between 2018 and 2022. A total of 53 candidate predictors-including 21 radiographic measurements, 19 preoperative blood biomarkers, 9 medical history variables, and 4 surgical characteristics-were evaluated. Patients were randomly partitioned into a training cohort (75%, n = 375) and a validation cohort (25%, n = 125). We determine independent prognostic factors used univariate comparisons between dysphagia and non-dysphagia groups, the least absolute shrinkage and selection operator (LASSO) regression, receiver operating characteristic (ROC) curves analysis, followed by an interaction analysis. The LASSO regression model was applied for predictive signature building in the training set. Model performance was assessed by receiver operating characteristic (ROC) curve analysis, decision curve analysis (DCA), and calibration plots in both cohorts.

RESULTS

Within one month after ACDF, 115 of 500 patients (23.0%) developed dysphagia. Univariate analysis yielded 37 variables associated with dysphagia. LASSO regression retained 13 predictors, and ROC analysis identified 30 variables with area under the curve (AUC) > 0.6. Intersecting these sets produced a final panel of 9 key predictors. The model achieved an AUC of 0.969 in the training cohort and 0.954 in the validation cohort. The DCA and calibration curve analysis showed good performance for the diagnostic model in both sets.

CONCLUSION

A LASSO-penalized logistic regression model incorporating radiographic parameters, blood biomarkers, medical history variables, and surgical characteristics accurately predicts postoperative dysphagia following ACDF and may guide individualized risk stratification.

摘要

目的

建立并验证一种用于预测接受颈椎前路椎间盘切除融合术(ACDF)患者术后吞咽困难的模型。

方法

我们回顾性分析了2018年至2022年间在本机构接受ACDF手术的500例患者。共评估了53个候选预测指标,包括21项影像学测量指标、19项术前血液生物标志物、9项病史变量和4项手术特征。患者被随机分为训练队列(75%,n = 375)和验证队列(25%,n = 125)。我们通过吞咽困难组与非吞咽困难组之间的单因素比较、最小绝对收缩和选择算子(LASSO)回归、受试者工作特征(ROC)曲线分析,随后进行交互分析来确定独立预后因素。LASSO回归模型应用于训练集中预测特征构建。通过ROC曲线分析、决策曲线分析(DCA)和两个队列中的校准图评估模型性能。

结果

在ACDF术后1个月内,500例患者中有115例(23.0%)出现吞咽困难。单因素分析产生了37个与吞咽困难相关的变量。LASSO回归保留了13个预测指标,ROC分析确定了30个曲线下面积(AUC)> 0.6的变量。将这些集合相交产生了9个关键预测指标的最终组合。该模型在训练队列中的AUC为0.969,在验证队列中的AUC为0.954。DCA和校准曲线分析显示该诊断模型在两个队列中均表现良好。

结论

结合影像学参数、血液生物标志物、病史变量和手术特征的LASSO惩罚逻辑回归模型可准确预测ACDF术后吞咽困难,并可能指导个体化风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验