文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

晚期胃癌中的人工智能:精准肿瘤学应用的全面综述

Artificial intelligence in advanced gastric cancer: a comprehensive review of applications in precision oncology.

作者信息

Fu Min, Xu Jialing, Lv Yingying, Jin Baijun

机构信息

Department of Medical Oncology, The First People's Hospital of Xiaoshan District, Hangzhou, China.

出版信息

Front Oncol. 2025 Aug 19;15:1630628. doi: 10.3389/fonc.2025.1630628. eCollection 2025.


DOI:10.3389/fonc.2025.1630628
PMID:40904504
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12401684/
Abstract

Gastric cancer (GC) remains a major global health challenge, particularly in its advanced stages where prognosis is poor, and treatment responses are heterogeneous. Precision oncology aims to tailor therapies, but current biomarkers have limitations. Artificial Intelligence (AI), encompassing machine learning (ML) and deep learning (DL), offers powerful tools to analyze complex, multi-dimensional data from advanced GC patients, including clinical records, genomics, imaging (radiomics), and digital pathology (pathomics). This review synthesizes the current state of AI applications in unresectable, advanced GC. AI models demonstrate significant potential in refining diagnosis and staging, predicting treatment efficacy for chemotherapy, immunotherapy, and targeted therapies, and assessing prognosis. Multi-modal AI approaches, integrating data from diverse sources, consistently show improved predictive performance over single-modality models, better reflecting the complexity of the disease. Key challenges remain, including data quality and standardization, model generalizability and interpretability, and the need for rigorous prospective validation. Future directions emphasize multi-center collaborations, development of robust and explainable AI (XAI), and seamless integration into clinical workflows. Overcoming these hurdles will be crucial to translate AI's potential into tangible clinical benefits, enabling truly personalized and effective management for patients with advanced gastric cancer.

摘要

胃癌(GC)仍然是一项重大的全球健康挑战,尤其是在晚期,其预后较差,治疗反应也存在异质性。精准肿瘤学旨在量身定制治疗方案,但目前的生物标志物存在局限性。人工智能(AI)涵盖机器学习(ML)和深度学习(DL),为分析晚期GC患者的复杂多维数据提供了强大工具,这些数据包括临床记录、基因组学、影像学(放射组学)和数字病理学(病理组学)。本综述综合了AI在不可切除的晚期GC中的应用现状。AI模型在优化诊断和分期、预测化疗、免疫治疗和靶向治疗的疗效以及评估预后方面显示出巨大潜力。整合来自不同来源数据的多模态AI方法始终比单模态模型表现出更好的预测性能,能更好地反映疾病的复杂性。关键挑战仍然存在,包括数据质量和标准化、模型的通用性和可解释性,以及进行严格前瞻性验证的必要性。未来的方向强调多中心合作、开发强大且可解释的AI(XAI)以及无缝融入临床工作流程。克服这些障碍对于将AI的潜力转化为切实的临床益处至关重要,从而能够为晚期胃癌患者实现真正的个性化和有效管理。

相似文献

[1]
Artificial intelligence in advanced gastric cancer: a comprehensive review of applications in precision oncology.

Front Oncol. 2025-8-19

[2]
Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects.

Int J Med Inform. 2024-8

[3]
Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review.

Ann Oncol. 2024-1

[4]
Artificial intelligence entering the pathology arena in oncology: current applications and future perspectives.

Ann Oncol. 2025-4-28

[5]
Deep Learning and Image Generator Health Tabular Data (IGHT) for Predicting Overall Survival in Patients With Colorectal Cancer: Retrospective Study.

JMIR Med Inform. 2025-8-19

[6]
The Role of Artificial Intelligence in Heart Failure Diagnostics, Risk Prediction, and Therapeutic Strategies: A Comprehensive Review.

Cureus. 2025-7-1

[7]
AI-Powered Insights into Drug Resistance in Gastric Cancer: A Path Toward Precision Therapy.

Iran J Pharm Res. 2025-5-25

[8]
Artificial Intelligence in Primary Malignant Bone Tumor Imaging: A Narrative Review.

Diagnostics (Basel). 2025-7-4

[9]
Application of artificial intelligence in the diagnosis of malignant digestive tract tumors: focusing on opportunities and challenges in endoscopy and pathology.

J Transl Med. 2025-4-9

[10]
Application of artificial intelligence in medical imaging for tumor diagnosis and treatment: a comprehensive approach.

Discov Oncol. 2025-8-26

本文引用的文献

[1]
The application of artificial intelligence in upper gastrointestinal cancers.

J Natl Cancer Cent. 2024-12-27

[2]
Advances and challenges in gastric cancer testing: the role of biomarkers.

Cancer Biol Med. 2025-3-24

[3]
The artificial intelligence revolution in gastric cancer management: clinical applications.

Cancer Cell Int. 2025-3-21

[4]
Artificial intelligence in gastrointestinal cancer research: Image learning advances and applications.

Cancer Lett. 2025-4-1

[5]
Multimodal deep learning approaches for precision oncology: a comprehensive review.

Brief Bioinform. 2024-11-22

[6]
Advancing precision medicine: the transformative role of artificial intelligence in immunogenomics, radiomics, and pathomics for biomarker discovery and immunotherapy optimization.

Cancer Biol Med. 2025-1-2

[7]
Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy.

Cell Rep Med. 2024-12-17

[8]
Multimodality deep learning radiomics predicts pathological response after neoadjuvant chemoradiotherapy for esophageal squamous cell carcinoma.

Insights Imaging. 2024-11-15

[9]
Applications of artificial intelligence in digital pathology for gastric cancer.

Front Oncol. 2024-10-28

[10]
Computed tomography-based radiomic model for the prediction of neoadjuvant immunochemotherapy response in patients with advanced gastric cancer.

World J Gastrointest Oncol. 2024-10-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索