Fu Min, Xu Jialing, Lv Yingying, Jin Baijun
Department of Medical Oncology, The First People's Hospital of Xiaoshan District, Hangzhou, China.
Front Oncol. 2025 Aug 19;15:1630628. doi: 10.3389/fonc.2025.1630628. eCollection 2025.
Gastric cancer (GC) remains a major global health challenge, particularly in its advanced stages where prognosis is poor, and treatment responses are heterogeneous. Precision oncology aims to tailor therapies, but current biomarkers have limitations. Artificial Intelligence (AI), encompassing machine learning (ML) and deep learning (DL), offers powerful tools to analyze complex, multi-dimensional data from advanced GC patients, including clinical records, genomics, imaging (radiomics), and digital pathology (pathomics). This review synthesizes the current state of AI applications in unresectable, advanced GC. AI models demonstrate significant potential in refining diagnosis and staging, predicting treatment efficacy for chemotherapy, immunotherapy, and targeted therapies, and assessing prognosis. Multi-modal AI approaches, integrating data from diverse sources, consistently show improved predictive performance over single-modality models, better reflecting the complexity of the disease. Key challenges remain, including data quality and standardization, model generalizability and interpretability, and the need for rigorous prospective validation. Future directions emphasize multi-center collaborations, development of robust and explainable AI (XAI), and seamless integration into clinical workflows. Overcoming these hurdles will be crucial to translate AI's potential into tangible clinical benefits, enabling truly personalized and effective management for patients with advanced gastric cancer.
胃癌(GC)仍然是一项重大的全球健康挑战,尤其是在晚期,其预后较差,治疗反应也存在异质性。精准肿瘤学旨在量身定制治疗方案,但目前的生物标志物存在局限性。人工智能(AI)涵盖机器学习(ML)和深度学习(DL),为分析晚期GC患者的复杂多维数据提供了强大工具,这些数据包括临床记录、基因组学、影像学(放射组学)和数字病理学(病理组学)。本综述综合了AI在不可切除的晚期GC中的应用现状。AI模型在优化诊断和分期、预测化疗、免疫治疗和靶向治疗的疗效以及评估预后方面显示出巨大潜力。整合来自不同来源数据的多模态AI方法始终比单模态模型表现出更好的预测性能,能更好地反映疾病的复杂性。关键挑战仍然存在,包括数据质量和标准化、模型的通用性和可解释性,以及进行严格前瞻性验证的必要性。未来的方向强调多中心合作、开发强大且可解释的AI(XAI)以及无缝融入临床工作流程。克服这些障碍对于将AI的潜力转化为切实的临床益处至关重要,从而能够为晚期胃癌患者实现真正的个性化和有效管理。
Iran J Pharm Res. 2025-5-25
Diagnostics (Basel). 2025-7-4
J Natl Cancer Cent. 2024-12-27
Cancer Biol Med. 2025-3-24
Cancer Cell Int. 2025-3-21
Brief Bioinform. 2024-11-22
Front Oncol. 2024-10-28
World J Gastrointest Oncol. 2024-10-15