Suppr超能文献

Cusp Universality for Correlated Random Matrices.

作者信息

Erdős László, Henheik Joscha, Riabov Volodymyr

机构信息

Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.

出版信息

Commun Math Phys. 2025;406(10):253. doi: 10.1007/s00220-025-05417-z. Epub 2025 Sep 1.

Abstract

For correlated real symmetric or complex Hermitian random matrices, we prove that the local eigenvalue statistics at any cusp singularity are universal. Since the density of states typically exhibits only square root edge or cubic root cusp singularities, our result completes the proof of the Wigner-Dyson-Mehta universality conjecture in all spectral regimes for a very general class of random matrices. Previously only the bulk and the edge universality were established in this generality (Alt et al. in Ann Probab 48(2):963-1001, 2020), while cusp universality was proven only for Wigner-type matrices with independent entries (Cipolloni et al. in Pure Appl Anal 1:615-707, 2019; Erdős et al. in Commun. Math. Phys. 378:1203-1278, 2018). As our main technical input, we prove an optimal local law at the cusp using the , a recursive tandem of the characteristic flow method and a Green function comparison argument. Moreover, our proof of the optimal local law holds uniformly in the spectrum, thus we also provide a significantly simplified alternative proof of the local eigenvalue universality in the previously studied bulk (Erdős et al. in Forum Math. Sigma 7:E8, 2019) and edge (Alt et al. in Ann Probab 48(2):963-1001, 2020) regimes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e1/12402049/4771cb89f4dc/220_2025_5417_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验