Erdős László, Riabov Volodymyr
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
Commun Math Phys. 2024;405(12):282. doi: 10.1007/s00220-024-05143-y. Epub 2024 Nov 6.
We prove the Eigenstate Thermalization Hypothesis for general Wigner-type matrices in the bulk of the self-consistent spectrum, with optimal control on the fluctuations for obs ervables of arbitrary rank. As the main technical ingredient, we prove rank-uniform optimal local laws for one and two resolvents of a Wigner-type matrix with regular observables. Our results hold under very general conditions on the variance profile, even allowing many vanishing entries, demonstrating that Eigenstate Thermalization occurs robustly across a diverse class of random matrix ensembles, for which the underlying quantum system has a non-trivial spatial structure.
我们证明了在自洽谱主体中一般维格纳型矩阵的本征态热化假设,对任意秩可观测量的涨落有最优控制。作为主要技术要素,我们证明了具有正则可观测量的维格纳型矩阵的单解析函数和双解析函数的秩一致最优局部定律。我们的结果在方差分布的非常一般条件下成立,甚至允许许多零元素,这表明本征态热化在各种各样的随机矩阵系综中稳健地发生,其基础量子系统具有非平凡的空间结构。